Ogan Özsoy, Alexandros Papageorgiou and Matteo Fasiello
{"title":"Scale-dependent chirality as a smoking gun for Abelian gauge fields during inflation","authors":"Ogan Özsoy, Alexandros Papageorgiou and Matteo Fasiello","doi":"10.1088/1475-7516/2024/12/008","DOIUrl":null,"url":null,"abstract":"Axion-inflation models are a compelling candidate as a mechanism behind the accelerated expansion in the early universe in light of the possibility to embed them in higher dimensional UV complete theories and the exciting prospect of testing them with next-generation cosmological probes. Adding an Abelian gauge sector to axion-inflation models makes for a rich, interesting, phenomenology spanning from primordial black holes to gravitational waves (GWs). Several recent studies employ an approximate analytic (Gaussian) template to characterize the effect of gauge field production on cosmological perturbations. In this work we go beyond such approximation and numerically study particle production and the ensuing scalar and tensor spectra. We find a significant deviation from results based on log-normally distributed vector field excitations. As an important phenomenological application of the improved method, we study the expected chirality and spectral index of the sourced GW background at scales relevant for current and next-generation GW detectors. One striking feature is that of a scale-dependent chirality. We derive a consistency relation between these two observables that can serve as an important tool in identifying key signatures of multi-field dynamics in axion inflation.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"1 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/12/008","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Axion-inflation models are a compelling candidate as a mechanism behind the accelerated expansion in the early universe in light of the possibility to embed them in higher dimensional UV complete theories and the exciting prospect of testing them with next-generation cosmological probes. Adding an Abelian gauge sector to axion-inflation models makes for a rich, interesting, phenomenology spanning from primordial black holes to gravitational waves (GWs). Several recent studies employ an approximate analytic (Gaussian) template to characterize the effect of gauge field production on cosmological perturbations. In this work we go beyond such approximation and numerically study particle production and the ensuing scalar and tensor spectra. We find a significant deviation from results based on log-normally distributed vector field excitations. As an important phenomenological application of the improved method, we study the expected chirality and spectral index of the sourced GW background at scales relevant for current and next-generation GW detectors. One striking feature is that of a scale-dependent chirality. We derive a consistency relation between these two observables that can serve as an important tool in identifying key signatures of multi-field dynamics in axion inflation.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.