CSearch: chemical space search via virtual synthesis and global optimization

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hakjean Kim, Seongok Ryu, Nuri Jung, Jinsol Yang, Chaok Seok
{"title":"CSearch: chemical space search via virtual synthesis and global optimization","authors":"Hakjean Kim,&nbsp;Seongok Ryu,&nbsp;Nuri Jung,&nbsp;Jinsol Yang,&nbsp;Chaok Seok","doi":"10.1186/s13321-024-00936-8","DOIUrl":null,"url":null,"abstract":"<div><p>The two key components of computational molecular design are virtually generating molecules and predicting the properties of these generated molecules. This study focuses on an effective method for molecular generation through virtual synthesis and global optimization of a given objective function. Using a pre-trained graph neural network (GNN) objective function to approximate the docking energies of compounds for four target receptors, we generated highly optimized compounds with 300–400 times less computational effort compared to virtual compound library screening. These optimized compounds exhibit similar synthesizability and diversity to known binders with high potency and are notably novel compared to library chemicals or known ligands. This method, called CSearch, can be effectively utilized to generate chemicals optimized for a given objective function. With the GNN function approximating docking energies, CSearch generated molecules with predicted binding poses to the target receptors similar to known inhibitors, demonstrating its effectiveness in producing drug-like binders.</p><p><b>Scientific Contribution</b> We have developed a method for effectively exploring the chemical space of drug-like molecules using a global optimization algorithm with fragment-based virtual synthesis. The compounds generated using this method optimize the given objective function efficiently and are synthesizable like commercial library compounds. Furthermore, they are diverse, novel drug-like molecules with properties similar to known inhibitors for target receptors.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00936-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00936-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The two key components of computational molecular design are virtually generating molecules and predicting the properties of these generated molecules. This study focuses on an effective method for molecular generation through virtual synthesis and global optimization of a given objective function. Using a pre-trained graph neural network (GNN) objective function to approximate the docking energies of compounds for four target receptors, we generated highly optimized compounds with 300–400 times less computational effort compared to virtual compound library screening. These optimized compounds exhibit similar synthesizability and diversity to known binders with high potency and are notably novel compared to library chemicals or known ligands. This method, called CSearch, can be effectively utilized to generate chemicals optimized for a given objective function. With the GNN function approximating docking energies, CSearch generated molecules with predicted binding poses to the target receptors similar to known inhibitors, demonstrating its effectiveness in producing drug-like binders.

Scientific Contribution We have developed a method for effectively exploring the chemical space of drug-like molecules using a global optimization algorithm with fragment-based virtual synthesis. The compounds generated using this method optimize the given objective function efficiently and are synthesizable like commercial library compounds. Furthermore, they are diverse, novel drug-like molecules with properties similar to known inhibitors for target receptors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信