β-Cell Secretory Capacity Predicts Metabolic Outcomes over 6 Years following Human Islet Transplantation

IF 6.2 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Diabetes Pub Date : 2024-12-04 DOI:10.2337/db24-0729
Anneliese J. Flatt, Austin M. Matus, Robert J. Gallop, Eileen Markmann, Cornelia Dalton-Bakes, Amy J. Peleckis, Chengyang Liu, Ali Naji, Michael R. Rickels
{"title":"β-Cell Secretory Capacity Predicts Metabolic Outcomes over 6 Years following Human Islet Transplantation","authors":"Anneliese J. Flatt, Austin M. Matus, Robert J. Gallop, Eileen Markmann, Cornelia Dalton-Bakes, Amy J. Peleckis, Chengyang Liu, Ali Naji, Michael R. Rickels","doi":"10.2337/db24-0729","DOIUrl":null,"url":null,"abstract":"Transplanted islet functional β-cell mass is measured by the β-cell secretory capacity derived from the acute insulin response to glucose-potentiated arginine (AIRpot), however, data are limited beyond one-year post-transplant for individuals with type 1 diabetes. We evaluated changes in β-cell secretory capacity in a single-center longitudinal analysis and examined relationships with measures of islet cell hormone metabolism and clinical measures of graft function (mixed-meal tolerance test [MMTT] C-peptide, BETA-2 score, and continuous glucose monitoring [CGM]). Eleven individuals received purified human pancreatic islets over one or two intra-portal infusions to achieve insulin-independence and were followed over a median (IQR) 6 (5-7) years. β-cell secretory capacity remained stable over 3-years before declining. Fasting glucagon and proinsulin secretory ratios under glucose-potentiation were inversely correlated with AIRpot. A functional β-cell mass of 40% normal predicted insulin-independence and was strongly predicted by MMTT C-peptide-to-glucose and BETA-2 score. A functional β-cell mass of >20% predicted excellent glycemic outcomes including ≤1% time <60 mg/dL, ≤2% time >180 mg/dL and ≥90% time-inrange 70-180 mg/dL. β-cell replacement approaches should target a functional β-cell mass >40% to provide sufficient islet reserve for sustained insulin-independence. MMTT C-peptide-to-glucose and BETA-2 score can inform changes in functional β-cell mass in the clinical setting.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"4 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db24-0729","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Transplanted islet functional β-cell mass is measured by the β-cell secretory capacity derived from the acute insulin response to glucose-potentiated arginine (AIRpot), however, data are limited beyond one-year post-transplant for individuals with type 1 diabetes. We evaluated changes in β-cell secretory capacity in a single-center longitudinal analysis and examined relationships with measures of islet cell hormone metabolism and clinical measures of graft function (mixed-meal tolerance test [MMTT] C-peptide, BETA-2 score, and continuous glucose monitoring [CGM]). Eleven individuals received purified human pancreatic islets over one or two intra-portal infusions to achieve insulin-independence and were followed over a median (IQR) 6 (5-7) years. β-cell secretory capacity remained stable over 3-years before declining. Fasting glucagon and proinsulin secretory ratios under glucose-potentiation were inversely correlated with AIRpot. A functional β-cell mass of 40% normal predicted insulin-independence and was strongly predicted by MMTT C-peptide-to-glucose and BETA-2 score. A functional β-cell mass of >20% predicted excellent glycemic outcomes including ≤1% time <60 mg/dL, ≤2% time >180 mg/dL and ≥90% time-inrange 70-180 mg/dL. β-cell replacement approaches should target a functional β-cell mass >40% to provide sufficient islet reserve for sustained insulin-independence. MMTT C-peptide-to-glucose and BETA-2 score can inform changes in functional β-cell mass in the clinical setting.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diabetes
Diabetes 医学-内分泌学与代谢
CiteScore
12.50
自引率
2.60%
发文量
1968
审稿时长
1 months
期刊介绍: Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes. However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信