Yusuke Isshiki, Xi Chen, Matt Teater, Ioannis Karagiannidis, Henna Nam, Winson Cai, Cem Meydan, Min Xia, Hao Shen, Johana Gutierrez, Vigneshwari Easwar Kumar, Sebastián E. Carrasco, Madhu M. Ouseph, Samuel Yamshon, Peter Martin, Ofir Griess, Efrat Shema, Patrizia Porazzi, Marco Ruella, Renier J. Brentjens, Wendy Béguelin
{"title":"EZH2 inhibition enhances T cell immunotherapies by inducing lymphoma immunogenicity and improving T cell function","authors":"Yusuke Isshiki, Xi Chen, Matt Teater, Ioannis Karagiannidis, Henna Nam, Winson Cai, Cem Meydan, Min Xia, Hao Shen, Johana Gutierrez, Vigneshwari Easwar Kumar, Sebastián E. Carrasco, Madhu M. Ouseph, Samuel Yamshon, Peter Martin, Ofir Griess, Efrat Shema, Patrizia Porazzi, Marco Ruella, Renier J. Brentjens, Wendy Béguelin","doi":"10.1016/j.ccell.2024.11.006","DOIUrl":null,"url":null,"abstract":"T cell-based immunotherapies have demonstrated effectiveness in treating diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL) but predicting response and understanding resistance remains a challenge. To address this, we developed syngeneic models reflecting the genetics, epigenetics, and immunology of human FL and DLBCL. We show that EZH2 inhibitors reprogram these models to re-express T cell engagement genes and render them highly immunogenic. EZH2 inhibitors do not harm tumor-controlling T cells or CAR-T cells. Instead, they reduce regulatory T cells, promote memory chimeric antigen receptor (CAR) CD8 phenotypes, and reduce exhaustion, resulting in a decreased tumor burden. Intravital 2-photon imaging shows increased CAR-T recruitment and interaction within the tumor microenvironment, improving lymphoma cell killing. Therefore, EZH2 inhibition enhances CAR-T cell efficacy through direct effects on CAR-T cells, in addition to rendering lymphoma B cells immunogenic. This approach is currently being evaluated in two clinical trials, NCT05934838 and NCT05994235, to improve immunotherapy outcomes in B cell lymphoma patients.","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"222 1","pages":""},"PeriodicalIF":48.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2024.11.006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
T cell-based immunotherapies have demonstrated effectiveness in treating diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL) but predicting response and understanding resistance remains a challenge. To address this, we developed syngeneic models reflecting the genetics, epigenetics, and immunology of human FL and DLBCL. We show that EZH2 inhibitors reprogram these models to re-express T cell engagement genes and render them highly immunogenic. EZH2 inhibitors do not harm tumor-controlling T cells or CAR-T cells. Instead, they reduce regulatory T cells, promote memory chimeric antigen receptor (CAR) CD8 phenotypes, and reduce exhaustion, resulting in a decreased tumor burden. Intravital 2-photon imaging shows increased CAR-T recruitment and interaction within the tumor microenvironment, improving lymphoma cell killing. Therefore, EZH2 inhibition enhances CAR-T cell efficacy through direct effects on CAR-T cells, in addition to rendering lymphoma B cells immunogenic. This approach is currently being evaluated in two clinical trials, NCT05934838 and NCT05994235, to improve immunotherapy outcomes in B cell lymphoma patients.
期刊介绍:
Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows:
Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers.
Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice.
Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers.
Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies.
Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.