{"title":"General Solution for Longitudinal Response of Shield Tunnel Considering the Effects of Joints and Soil Shear Resistance","authors":"Weiming Huang, Yanwei Zang, Jinchang Wang, Changbao Liu, Zhongxuan Yang, Rongqiao Xu, Huajian Fang","doi":"10.1002/nag.3909","DOIUrl":null,"url":null,"abstract":"This study introduces a general solution for assessing the longitudinal response of shield tunnels, incorporating the combined effects of joints and soil shear resistance. The analysis employs the Timoshenko beam spring model atop a Vlasov foundation, subjected to arbitrary loads and various boundary conditions. Governing equations and relevant boundary conditions are derived using a variational formulation. Validation is conducted against existing simplified analytical solutions and finite element method simulations, showing the efficacy of the proposed solution. Comparative analyses of different models are undertaken based on the potential energy considerations. Additionally, a parametric study explores influential factors such as subgrade shear and reaction coefficients, as well as joint stiffnesses. Findings highlight the significance of accounting for the soil shear resistance and caution against underestimation when using equivalent continuous beam models. The proposed solution improves the prediction accuracy for the longitudinal response of shield tunnels and offers several benefits including compatibility with other analytical models, computation efficiency, and versatility in considering diverse loads and boundary conditions.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"57 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3909","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a general solution for assessing the longitudinal response of shield tunnels, incorporating the combined effects of joints and soil shear resistance. The analysis employs the Timoshenko beam spring model atop a Vlasov foundation, subjected to arbitrary loads and various boundary conditions. Governing equations and relevant boundary conditions are derived using a variational formulation. Validation is conducted against existing simplified analytical solutions and finite element method simulations, showing the efficacy of the proposed solution. Comparative analyses of different models are undertaken based on the potential energy considerations. Additionally, a parametric study explores influential factors such as subgrade shear and reaction coefficients, as well as joint stiffnesses. Findings highlight the significance of accounting for the soil shear resistance and caution against underestimation when using equivalent continuous beam models. The proposed solution improves the prediction accuracy for the longitudinal response of shield tunnels and offers several benefits including compatibility with other analytical models, computation efficiency, and versatility in considering diverse loads and boundary conditions.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.