Junyan Lyu;Perry F. Bartlett;Fatima A. Nasrallah;Xiaoying Tang
{"title":"Masked Deformation Modeling for Volumetric Brain MRI Self-Supervised Pre-Training","authors":"Junyan Lyu;Perry F. Bartlett;Fatima A. Nasrallah;Xiaoying Tang","doi":"10.1109/TMI.2024.3510922","DOIUrl":null,"url":null,"abstract":"Self-supervised learning (SSL) has been proposed to alleviate neural networks’ reliance on annotated data and to improve downstream tasks’ performance, which has obtained substantial success in several volumetric medical image segmentation tasks. However, most existing approaches are designed and pre-trained on CT or MRI datasets of non-brain organs. The lack of brain prior limits those methods’ performance on brain segmentation, especially on fine-grained brain parcellation. To overcome this limitation, we here propose a novel SSL strategy for MRI of the human brain, named Masked Deformation Modeling (MDM). MDM first conducts atlas-guided patch sampling on individual brain MRI scans (moving volumes) and an MNI152 template (a fixed volume). The sampled moving volumes are randomly masked in a feature-aligned manner, and then sent into a U-Net-based network to extract latent features. An intensity head and a deformation field head are used to decode the latent features, respectively restoring the masked volume and predicting the deformation field from the moving volume to the fixed volume. The proposed MDM is fine-tuned and evaluated on three brain parcellation datasets with different granularities (JHU, Mindboggle-101, CANDI), a brain lesion segmentation dataset (ATLAS2), and a brain tumor segmentation dataset (BraTS21). Results demonstrate that MDM outperforms various state-of-the-art medical SSL methods by considerable margins, and can effectively reduce the annotation effort by at least 40%. Codes and pre-trained weights will be released at <uri>https://github.com/CRazorback/MDM</uri>.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 3","pages":"1596-1607"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10777582/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Self-supervised learning (SSL) has been proposed to alleviate neural networks’ reliance on annotated data and to improve downstream tasks’ performance, which has obtained substantial success in several volumetric medical image segmentation tasks. However, most existing approaches are designed and pre-trained on CT or MRI datasets of non-brain organs. The lack of brain prior limits those methods’ performance on brain segmentation, especially on fine-grained brain parcellation. To overcome this limitation, we here propose a novel SSL strategy for MRI of the human brain, named Masked Deformation Modeling (MDM). MDM first conducts atlas-guided patch sampling on individual brain MRI scans (moving volumes) and an MNI152 template (a fixed volume). The sampled moving volumes are randomly masked in a feature-aligned manner, and then sent into a U-Net-based network to extract latent features. An intensity head and a deformation field head are used to decode the latent features, respectively restoring the masked volume and predicting the deformation field from the moving volume to the fixed volume. The proposed MDM is fine-tuned and evaluated on three brain parcellation datasets with different granularities (JHU, Mindboggle-101, CANDI), a brain lesion segmentation dataset (ATLAS2), and a brain tumor segmentation dataset (BraTS21). Results demonstrate that MDM outperforms various state-of-the-art medical SSL methods by considerable margins, and can effectively reduce the annotation effort by at least 40%. Codes and pre-trained weights will be released at https://github.com/CRazorback/MDM.