A Novel Fault Diagnosis Scheme Based on Local Fault Currents for DC Microgrids

IF 3.8 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Weiwei Li;Hua Han;Yao Sun;Shimiao Chen;Hongyi Liu;Xinlong Zheng;Yonglu Liu;Jin Zhao
{"title":"A Novel Fault Diagnosis Scheme Based on Local Fault Currents for DC Microgrids","authors":"Weiwei Li;Hua Han;Yao Sun;Shimiao Chen;Hongyi Liu;Xinlong Zheng;Yonglu Liu;Jin Zhao","doi":"10.1109/TPWRD.2024.3510460","DOIUrl":null,"url":null,"abstract":"The diversity of line fault types, the uncertainty of fault resistances, the limitation of available fault information, and the similarity of positive pole currents under different work conditions challenge the fault diagnosis of DC microgrids. This paper proposes a double threshold fault diagnosis scheme for line faults with wide-range fault resistances only using local fault currents such as bus-side capacitor current and positive pole line current. One threshold is designed based on the bus-side capacitor current estimation through the bus-side capacitor voltage to detect low-resistance faults rapidly. The other threshold is designed based on a proposed weighted correlation coefficient between the bus-side capacitor current and positive pole line current to detect high-resistance faults under noise accurately. All types of line faults can be classified accurately in 1.5 ms based on the positive pole output current and the ratio of the bus-side capacitor current to the variation value of the positive pole output current. The proposed scheme improves the reliability and economy of fault diagnosis by only using positive pole information and non-real-time communication. Finally, the feasibility of the proposed fault diagnosis scheme is verified by simulations and experiments.","PeriodicalId":13498,"journal":{"name":"IEEE Transactions on Power Delivery","volume":"40 1","pages":"570-583"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Delivery","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10772397/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The diversity of line fault types, the uncertainty of fault resistances, the limitation of available fault information, and the similarity of positive pole currents under different work conditions challenge the fault diagnosis of DC microgrids. This paper proposes a double threshold fault diagnosis scheme for line faults with wide-range fault resistances only using local fault currents such as bus-side capacitor current and positive pole line current. One threshold is designed based on the bus-side capacitor current estimation through the bus-side capacitor voltage to detect low-resistance faults rapidly. The other threshold is designed based on a proposed weighted correlation coefficient between the bus-side capacitor current and positive pole line current to detect high-resistance faults under noise accurately. All types of line faults can be classified accurately in 1.5 ms based on the positive pole output current and the ratio of the bus-side capacitor current to the variation value of the positive pole output current. The proposed scheme improves the reliability and economy of fault diagnosis by only using positive pole information and non-real-time communication. Finally, the feasibility of the proposed fault diagnosis scheme is verified by simulations and experiments.
基于局部故障电流的直流微电网故障诊断新方案
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Power Delivery
IEEE Transactions on Power Delivery 工程技术-工程:电子与电气
CiteScore
9.00
自引率
13.60%
发文量
513
审稿时长
6 months
期刊介绍: The scope of the Society embraces planning, research, development, design, application, construction, installation and operation of apparatus, equipment, structures, materials and systems for the safe, reliable and economic generation, transmission, distribution, conversion, measurement and control of electric energy. It includes the developing of engineering standards, the providing of information and instruction to the public and to legislators, as well as technical scientific, literary, educational and other activities that contribute to the electric power discipline or utilize the techniques or products within this discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信