Nrf2 protects against oxidative damage induced by hemoglobin in the liver of grass carp (Ctenopharyngodon idella).

Ningjing Li, Jialing Song, Yan Yang, Xiaoman Huang, Ye Tian, Bing Chen, Li Lin, Zhendong Qin
{"title":"Nrf2 protects against oxidative damage induced by hemoglobin in the liver of grass carp (Ctenopharyngodon idella).","authors":"Ningjing Li, Jialing Song, Yan Yang, Xiaoman Huang, Ye Tian, Bing Chen, Li Lin, Zhendong Qin","doi":"10.1016/j.bbadis.2024.167600","DOIUrl":null,"url":null,"abstract":"<p><p>Hemoglobin (Hb) releases during hemorrhaging and causes oxidative damage, further exacerbates the development of multiple diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates cellular defenses against toxic and oxidative challenges. However, the regulation mechanism of Nrf2 in Hb-induced oxidative stress remains unclear in teleost. To accomplish this goal, a hemolysis model was established by injecting grass carp with phenylalanine (PHZ), and the immunofluorescence analysis (IFA) and hematoxylin and eosin (H&E) staining revealed that PHZ-induced hemolysis caused Hb accumulation and hepatic vacuolization, resulted in tissue damage. Prussian blue, Sirius red, and Masson staining results revealed significant iron deposition and extensive collagen fiber accumulation in the liver. IFA and immunohistochemical analyses demonstrated that PHZ-induced hemolysis markedly increased the production of reactive oxygen species (ROS), malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE). The quantitative real-time PCR (qRT-PCR) analysis data revealed that the PHZ-induced hemolysis also significantly upregulated the expression of antioxidant-related genes through activation of the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/Nrf2 signaling pathway. To further explore the molecule regulation mechanism of PHZ-induced hemolysis, the RNA-seq analysis was performed, and the data revealed that the AMPK/Nrf2 and multiple programmed cell death pathways, including ferroptosis, autophagy, apoptosis, and necroptosis in PHZ injection groups were significant upregulated. In vitro, the hemin supplementation activated the expression of target genes in the AMPK/Nrf2 pathway detected by qRT-PCR. To further verify the regulation function of Nrf2, an Nrf2 activator (4OI) was supplemented, and the flow cytometer analysis results suggested that the Hb-induced cell damage was significantly attenuated. However, the supplementary of ML385 down-regulated the AMPK/Nrf2 pathway and aggravated the hemin induced cell death. In conclusion, these findings highlight the critical regulatory role of the AMPK/Nrf2 signaling pathway in protecting against Hb-induced oxidative damage in the liver of grass carp.</p>","PeriodicalId":93896,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":" ","pages":"167600"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bbadis.2024.167600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hemoglobin (Hb) releases during hemorrhaging and causes oxidative damage, further exacerbates the development of multiple diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates cellular defenses against toxic and oxidative challenges. However, the regulation mechanism of Nrf2 in Hb-induced oxidative stress remains unclear in teleost. To accomplish this goal, a hemolysis model was established by injecting grass carp with phenylalanine (PHZ), and the immunofluorescence analysis (IFA) and hematoxylin and eosin (H&E) staining revealed that PHZ-induced hemolysis caused Hb accumulation and hepatic vacuolization, resulted in tissue damage. Prussian blue, Sirius red, and Masson staining results revealed significant iron deposition and extensive collagen fiber accumulation in the liver. IFA and immunohistochemical analyses demonstrated that PHZ-induced hemolysis markedly increased the production of reactive oxygen species (ROS), malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE). The quantitative real-time PCR (qRT-PCR) analysis data revealed that the PHZ-induced hemolysis also significantly upregulated the expression of antioxidant-related genes through activation of the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/Nrf2 signaling pathway. To further explore the molecule regulation mechanism of PHZ-induced hemolysis, the RNA-seq analysis was performed, and the data revealed that the AMPK/Nrf2 and multiple programmed cell death pathways, including ferroptosis, autophagy, apoptosis, and necroptosis in PHZ injection groups were significant upregulated. In vitro, the hemin supplementation activated the expression of target genes in the AMPK/Nrf2 pathway detected by qRT-PCR. To further verify the regulation function of Nrf2, an Nrf2 activator (4OI) was supplemented, and the flow cytometer analysis results suggested that the Hb-induced cell damage was significantly attenuated. However, the supplementary of ML385 down-regulated the AMPK/Nrf2 pathway and aggravated the hemin induced cell death. In conclusion, these findings highlight the critical regulatory role of the AMPK/Nrf2 signaling pathway in protecting against Hb-induced oxidative damage in the liver of grass carp.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信