Federated Node Classification over Distributed Ego-Networks with Secure Contrastive Embedding Sharing.

Han Xie, Li Xiong, Carl Yang
{"title":"Federated Node Classification over Distributed Ego-Networks with Secure Contrastive Embedding Sharing.","authors":"Han Xie, Li Xiong, Carl Yang","doi":"10.1145/3627673.3679834","DOIUrl":null,"url":null,"abstract":"<p><p>Federated learning on graphs (a.k.a., federated graph learning- FGL) has recently received increasing attention due to its capacity to enable collaborative learning over distributed graph datasets without compromising local clients' data privacy. In previous works, clients of FGL typically represent institutes or organizations that possess sets of entire graphs (e.g., molecule graphs in biochemical research) or parts of a larger graph (e.g., sub-user networks of e-commerce platforms). However, another natural paradigm exists where clients act as remote devices retaining the graph structures of local neighborhoods centered around the device owners (i.e., ego-networks), which can be modeled for specific graph applications such as user profiling on social ego-networks and infection prediction on contact ego-networks. FGL in such novel yet realistic ego-network settings faces the unique challenge of incomplete neighborhood information for non-ego local nodes since they likely appear and have different sets of neighbors in multiple ego-networks. To address this challenge, we propose an FGL method for distributed ego-networks in which clients obtain complete neighborhood information of local nodes through sharing node embeddings with other clients. A contrastive learning mechanism is proposed to bridge the gap between local and global node embeddings and stabilize the local training of graph neural network models, while a secure embedding sharing protocol is employed to protect individual node identity and embedding privacy against the server and other clients. Comprehensive experiments on various distributed ego-network datasets successfully demonstrate the effectiveness of our proposed embedding sharing method on top of different federated model sharing frameworks, and we also provide discussions on the potential efficiency and privacy drawbacks of the method as well as their future mitigation.</p>","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"2024 ","pages":"2607-2617"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606401/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627673.3679834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning on graphs (a.k.a., federated graph learning- FGL) has recently received increasing attention due to its capacity to enable collaborative learning over distributed graph datasets without compromising local clients' data privacy. In previous works, clients of FGL typically represent institutes or organizations that possess sets of entire graphs (e.g., molecule graphs in biochemical research) or parts of a larger graph (e.g., sub-user networks of e-commerce platforms). However, another natural paradigm exists where clients act as remote devices retaining the graph structures of local neighborhoods centered around the device owners (i.e., ego-networks), which can be modeled for specific graph applications such as user profiling on social ego-networks and infection prediction on contact ego-networks. FGL in such novel yet realistic ego-network settings faces the unique challenge of incomplete neighborhood information for non-ego local nodes since they likely appear and have different sets of neighbors in multiple ego-networks. To address this challenge, we propose an FGL method for distributed ego-networks in which clients obtain complete neighborhood information of local nodes through sharing node embeddings with other clients. A contrastive learning mechanism is proposed to bridge the gap between local and global node embeddings and stabilize the local training of graph neural network models, while a secure embedding sharing protocol is employed to protect individual node identity and embedding privacy against the server and other clients. Comprehensive experiments on various distributed ego-network datasets successfully demonstrate the effectiveness of our proposed embedding sharing method on top of different federated model sharing frameworks, and we also provide discussions on the potential efficiency and privacy drawbacks of the method as well as their future mitigation.

基于安全对比嵌入共享的分布式自我网络的联邦节点分类。
图上的联邦学习(又名联邦图学习- FGL)最近受到越来越多的关注,因为它能够在不损害本地客户端的数据隐私的情况下,在分布式图数据集上进行协作学习。在之前的工作中,FGL的客户通常代表拥有完整图集(如生化研究中的分子图)或更大图的部分(如电子商务平台的子用户网络)的机构或组织。然而,存在另一种自然范例,即客户端充当远程设备,保留以设备所有者(即自我网络)为中心的本地社区的图形结构,这可以为特定的图形应用程序建模,例如社交自我网络上的用户分析和接触自我网络上的感染预测。在这种新颖而现实的自我网络环境下,FGL面临着非自我局部节点邻居信息不完整的独特挑战,因为它们可能在多个自我网络中出现并拥有不同的邻居集。为了解决这一挑战,我们提出了一种用于分布式自我网络的FGL方法,其中客户端通过与其他客户端共享节点嵌入来获取本地节点的完整邻域信息。提出了一种对比学习机制来弥合局部和全局节点嵌入之间的差距,稳定图神经网络模型的局部训练,同时采用安全嵌入共享协议来保护单个节点的身份和嵌入隐私不受服务器和其他客户端的影响。在各种分布式自我网络数据集上的综合实验成功地证明了我们提出的嵌入共享方法在不同联邦模型共享框架之上的有效性,我们还讨论了该方法的潜在效率和隐私缺陷以及未来的缓解措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信