IGAMT: Privacy-Preserving Electronic Health Record Synthesization with Heterogeneity and Irregularity.

Wenjie Wang, Pengfei Tang, Jian Lou, Yuanming Shao, Lance Waller, Yi-An Ko, Li Xiong
{"title":"IGAMT: Privacy-Preserving Electronic Health Record Synthesization with Heterogeneity and Irregularity.","authors":"Wenjie Wang, Pengfei Tang, Jian Lou, Yuanming Shao, Lance Waller, Yi-An Ko, Li Xiong","doi":"10.1609/aaai.v38i14.29491","DOIUrl":null,"url":null,"abstract":"<p><p>Utilizing electronic health records (EHR) for machine learning-driven clinical research has great potential to enhance outcome predictions and treatment personalization. Nonetheless, due to privacy and security concerns, the secondary use of EHR data is regulated, constraining researchers' access to EHR data. Generating synthetic EHR data with deep learning methods is a viable and promising approach to mitigate privacy concerns, offering not only a supplementary resource for downstream applications but also sidestepping the privacy risks associated with real patient data. While prior efforts have concentrated on EHR data synthesis, significant challenges persist: addressing the heterogeneity of features including temporal and non-temporal features, structurally missing values, and irregularity of the temporal measures, and ensuring rigorous privacy of the real data used for model training. Existing works in this domain only focused on solving one or two aforementioned challenges. In this work, we propose <i>IGAMT</i>, an innovative framework to generate privacy-preserved synthetic EHR data that not only maintains high quality with heterogeneous features, missing values, and irregular measures but also achieves differential privacy with enhanced privacy-utility trade-off. Extensive experiments prove that <i>IGAMT</i> significantly outperforms baseline and state-of-the-art models in terms of resemblance to real data and performance of downstream applications. Ablation studies also prove the effectiveness of the techniques applied in <i>IGAMT</i>.</p>","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"38 14","pages":"15634-15643"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606572/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v38i14.29491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing electronic health records (EHR) for machine learning-driven clinical research has great potential to enhance outcome predictions and treatment personalization. Nonetheless, due to privacy and security concerns, the secondary use of EHR data is regulated, constraining researchers' access to EHR data. Generating synthetic EHR data with deep learning methods is a viable and promising approach to mitigate privacy concerns, offering not only a supplementary resource for downstream applications but also sidestepping the privacy risks associated with real patient data. While prior efforts have concentrated on EHR data synthesis, significant challenges persist: addressing the heterogeneity of features including temporal and non-temporal features, structurally missing values, and irregularity of the temporal measures, and ensuring rigorous privacy of the real data used for model training. Existing works in this domain only focused on solving one or two aforementioned challenges. In this work, we propose IGAMT, an innovative framework to generate privacy-preserved synthetic EHR data that not only maintains high quality with heterogeneous features, missing values, and irregular measures but also achieves differential privacy with enhanced privacy-utility trade-off. Extensive experiments prove that IGAMT significantly outperforms baseline and state-of-the-art models in terms of resemblance to real data and performance of downstream applications. Ablation studies also prove the effectiveness of the techniques applied in IGAMT.

IGAMT:具有异质性和不规则性的隐私保护电子病历综合。
利用电子健康记录(EHR)进行机器学习驱动的临床研究,在增强结果预测和治疗个性化方面具有巨大的潜力。然而,出于隐私和安全考虑,电子病历数据的二次使用受到了监管,限制了研究人员对电子病历数据的访问。使用深度学习方法生成合成EHR数据是一种可行且有前途的方法,可以减轻隐私问题,不仅为下游应用程序提供补充资源,还可以避免与真实患者数据相关的隐私风险。虽然之前的工作集中在EHR数据合成上,但仍然存在重大挑战:解决特征的异质性,包括时间和非时间特征、结构缺失值和时间度量的不规则性,并确保用于模型训练的真实数据的严格隐私。该领域的现有工作只集中于解决上述一两个挑战。在这项工作中,我们提出了IGAMT,这是一个创新的框架,用于生成隐私保护的合成电子病历数据,该数据不仅具有异构特征,缺失值和不规则度量,而且可以通过增强隐私-效用权衡来实现差分隐私。大量的实验证明,IGAMT在与真实数据的相似性和下游应用程序的性能方面明显优于基线和最先进的模型。消融研究也证明了应用于IGAMT的技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信