Samuel W Remedios, Shuo Han, Lianrui Zuo, Aaron Carass, Dzung L Pham, Jerry L Prince, Blake E Dewey
{"title":"Self-Supervised Super-Resolution for Anisotropic MR Images with and Without Slice Gap.","authors":"Samuel W Remedios, Shuo Han, Lianrui Zuo, Aaron Carass, Dzung L Pham, Jerry L Prince, Blake E Dewey","doi":"10.1007/978-3-031-44689-4_12","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic resonance (MR) images are often acquired as multi-slice volumes to reduce scan time and motion artifacts while improving signal-to-noise ratio. These slices often are thicker than their in-plane resolution and sometimes are acquired with gaps between slices. Such thick-slice image volumes (possibly with gaps) can impact the accuracy of volumetric analysis and 3D methods. While many super-resolution (SR) methods have been proposed to address thick slices, few have directly addressed the slice gap scenario. Furthermore, data-driven methods are sensitive to domain shift due to the variability of resolution, contrast in acquisition, pathology, and differences in anatomy. In this work, we propose a self-supervised SR technique to address anisotropic MR images with and without slice gap. We compare against competing methods and validate in both signal recovery and downstream task performance on two open-source datasets and show improvements in all respects. Our code publicly available at https://gitlab.com/iacl/smore.</p>","PeriodicalId":91967,"journal":{"name":"Simulation and synthesis in medical imaging : ... International Workshop, SASHIMI ..., held in conjunction with MICCAI ..., proceedings. SASHIMI (Workshop)","volume":"14288 ","pages":"118-128"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613142/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation and synthesis in medical imaging : ... International Workshop, SASHIMI ..., held in conjunction with MICCAI ..., proceedings. SASHIMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-44689-4_12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic resonance (MR) images are often acquired as multi-slice volumes to reduce scan time and motion artifacts while improving signal-to-noise ratio. These slices often are thicker than their in-plane resolution and sometimes are acquired with gaps between slices. Such thick-slice image volumes (possibly with gaps) can impact the accuracy of volumetric analysis and 3D methods. While many super-resolution (SR) methods have been proposed to address thick slices, few have directly addressed the slice gap scenario. Furthermore, data-driven methods are sensitive to domain shift due to the variability of resolution, contrast in acquisition, pathology, and differences in anatomy. In this work, we propose a self-supervised SR technique to address anisotropic MR images with and without slice gap. We compare against competing methods and validate in both signal recovery and downstream task performance on two open-source datasets and show improvements in all respects. Our code publicly available at https://gitlab.com/iacl/smore.