SMART-PET: a Self-SiMilARiTy-aware generative adversarial framework for reconstructing low-count [18F]-FDG-PET brain imaging.

Confidence Raymond, Dong Zhang, Jorge Cabello, Linshan Liu, Paulien Moyaert, Jorge G Burneo, Michael O Dada, Justin W Hicks, Elizabeth Finger, Andrea Soddu, Andrea Andrade, Michael T Jurkiewicz, Udunna C Anazodo
{"title":"SMART-PET: a Self-SiMilARiTy-aware generative adversarial framework for reconstructing low-count [18F]-FDG-PET brain imaging.","authors":"Confidence Raymond, Dong Zhang, Jorge Cabello, Linshan Liu, Paulien Moyaert, Jorge G Burneo, Michael O Dada, Justin W Hicks, Elizabeth Finger, Andrea Soddu, Andrea Andrade, Michael T Jurkiewicz, Udunna C Anazodo","doi":"10.3389/fnume.2024.1469490","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In Positron Emission Tomography (PET) imaging, the use of tracers increases radioactive exposure for longitudinal evaluations and in radiosensitive populations such as pediatrics. However, reducing injected PET activity potentially leads to an unfavorable compromise between radiation exposure and image quality, causing lower signal-to-noise ratios and degraded images. Deep learning-based denoising approaches can be employed to recover low count PET image signals: nonetheless, most of these methods rely on structural or anatomic guidance from magnetic resonance imaging (MRI) and fails to effectively preserve global spatial features in denoised PET images, without impacting signal-to-noise ratios.</p><p><strong>Methods: </strong>In this study, we developed a novel PET only deep learning framework, the Self-SiMilARiTy-Aware Generative Adversarial Framework (SMART), which leverages Generative Adversarial Networks (GANs) and a self-similarity-aware attention mechanism for denoising [18F]-fluorodeoxyglucose (18F-FDG) PET images. This study employs a combination of prospective and retrospective datasets in its design. In total, 114 subjects were included in the study, comprising 34 patients who underwent 18F-Fluorodeoxyglucose PET (FDG) PET imaging for drug-resistant epilepsy, 10 patients for frontotemporal dementia indications, and 70 healthy volunteers. To effectively denoise PET images without anatomical details from MRI, a self-similarity attention mechanism (SSAB) was devised. which learned the distinctive structural and pathological features. These SSAB-enhanced features were subsequently applied to the SMART GAN algorithm and trained to denoise the low-count PET images using the standard dose PET image acquired from each individual participant as reference. The trained GAN algorithm was evaluated using image quality measures including structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), normalized root mean square (NRMSE), Fréchet inception distance (FID), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR).</p><p><strong>Results: </strong>In comparison to the standard-dose, SMART-PET had on average a SSIM of 0.984 ± 0.007, PSNR of 38.126 ± 2.631 dB, NRMSE of 0.091 ± 0.028, FID of 0.455 ± 0.065, SNR of 0.002 ± 0.001, and CNR of 0.011 ± 0.011. Regions of interest measurements obtained with datasets decimated down to 10% of the original counts, showed a deviation of less than 1.4% when compared to the ground-truth values.</p><p><strong>Discussion: </strong>In general, SMART-PET shows promise in reducing noise in PET images and can synthesize diagnostic quality images with a 90% reduction in standard of care injected activity. These results make it a potential candidate for clinical applications in radiosensitive populations and for longitudinal neurological studies.</p>","PeriodicalId":73095,"journal":{"name":"Frontiers in nuclear medicine (Lausanne, Switzerland)","volume":"4 ","pages":"1469490"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611550/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in nuclear medicine (Lausanne, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnume.2024.1469490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: In Positron Emission Tomography (PET) imaging, the use of tracers increases radioactive exposure for longitudinal evaluations and in radiosensitive populations such as pediatrics. However, reducing injected PET activity potentially leads to an unfavorable compromise between radiation exposure and image quality, causing lower signal-to-noise ratios and degraded images. Deep learning-based denoising approaches can be employed to recover low count PET image signals: nonetheless, most of these methods rely on structural or anatomic guidance from magnetic resonance imaging (MRI) and fails to effectively preserve global spatial features in denoised PET images, without impacting signal-to-noise ratios.

Methods: In this study, we developed a novel PET only deep learning framework, the Self-SiMilARiTy-Aware Generative Adversarial Framework (SMART), which leverages Generative Adversarial Networks (GANs) and a self-similarity-aware attention mechanism for denoising [18F]-fluorodeoxyglucose (18F-FDG) PET images. This study employs a combination of prospective and retrospective datasets in its design. In total, 114 subjects were included in the study, comprising 34 patients who underwent 18F-Fluorodeoxyglucose PET (FDG) PET imaging for drug-resistant epilepsy, 10 patients for frontotemporal dementia indications, and 70 healthy volunteers. To effectively denoise PET images without anatomical details from MRI, a self-similarity attention mechanism (SSAB) was devised. which learned the distinctive structural and pathological features. These SSAB-enhanced features were subsequently applied to the SMART GAN algorithm and trained to denoise the low-count PET images using the standard dose PET image acquired from each individual participant as reference. The trained GAN algorithm was evaluated using image quality measures including structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), normalized root mean square (NRMSE), Fréchet inception distance (FID), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR).

Results: In comparison to the standard-dose, SMART-PET had on average a SSIM of 0.984 ± 0.007, PSNR of 38.126 ± 2.631 dB, NRMSE of 0.091 ± 0.028, FID of 0.455 ± 0.065, SNR of 0.002 ± 0.001, and CNR of 0.011 ± 0.011. Regions of interest measurements obtained with datasets decimated down to 10% of the original counts, showed a deviation of less than 1.4% when compared to the ground-truth values.

Discussion: In general, SMART-PET shows promise in reducing noise in PET images and can synthesize diagnostic quality images with a 90% reduction in standard of care injected activity. These results make it a potential candidate for clinical applications in radiosensitive populations and for longitudinal neurological studies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信