Protective Effects of Antcin H Isolated from Antrodia cinnamomea Against Neuroinflammation in Huntington's Disease via NLRP3 Inflammasome Inhibition.

IF 6.2
Yu-Jun Chang, Cheng-Hsu Chen, Yi-Chen Chen, Ming-Tse Wu, Ting-Yu Lin, Kuo-Feng Hua, Tz-Chuen Ju
{"title":"Protective Effects of Antcin H Isolated from Antrodia cinnamomea Against Neuroinflammation in Huntington's Disease via NLRP3 Inflammasome Inhibition.","authors":"Yu-Jun Chang, Cheng-Hsu Chen, Yi-Chen Chen, Ming-Tse Wu, Ting-Yu Lin, Kuo-Feng Hua, Tz-Chuen Ju","doi":"10.1007/s11481-024-10161-7","DOIUrl":null,"url":null,"abstract":"<p><p>Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the huntingtin (HTT) gene. When the CAG repeat exceeds 36, it results in the accumulation of the mutant HTT (mHTT) protein in neurons and glial cells. Key pathological mechanisms in HD include excitotoxicity, energy dysfunction, impaired mitochondrial function, increased oxidative stress, and neuroinflammation. The NLRP3 inflammasome is a multimeric protein complex element of NLRP3, ASC, and caspase-1, which regulates interleukin (IL)-1β and IL-18 secretion. The NLRP3 inflammasome plays an important role in inflammatory reactions and is involved in the pathogenesis of several neurodegenerative diseases. We have previously demonstrated high NLRP3 inflammasome expression levels in the striatum of R6/2 mice (a transgenic HD mouse model). Systematic administration of an NLRP3 inhibitor (MCC950) to R6/2 mice suppressed the NLRP3 inflammasome, decreased IL-1β and reactive oxygen species production, and reduced neuronal toxicity, suggesting protective effects against HD. Antrodia cinnamomea is an indigenous medicinal fungus in Taiwan, which shows diverse medicinal and pharmacological activities, but its effects in HD are not well understood. Herein, we report that systematic administration of Antcin-H isolated from A. cinnamomea to R6/2 mice suppressed the NLRP3 inflammasome, IL-1β production, and reduced neuronal toxicity. Most importantly, oral administration of Antcin-H reduced disease progression by increasing neuronal survival, reducing neuroinflammation during an extended lifespan, and improving motor dysfunction in R6/2 mice. Taken together, our data suggest that Antcin-H has therapeutic potential for treating HD.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"1"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-024-10161-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the huntingtin (HTT) gene. When the CAG repeat exceeds 36, it results in the accumulation of the mutant HTT (mHTT) protein in neurons and glial cells. Key pathological mechanisms in HD include excitotoxicity, energy dysfunction, impaired mitochondrial function, increased oxidative stress, and neuroinflammation. The NLRP3 inflammasome is a multimeric protein complex element of NLRP3, ASC, and caspase-1, which regulates interleukin (IL)-1β and IL-18 secretion. The NLRP3 inflammasome plays an important role in inflammatory reactions and is involved in the pathogenesis of several neurodegenerative diseases. We have previously demonstrated high NLRP3 inflammasome expression levels in the striatum of R6/2 mice (a transgenic HD mouse model). Systematic administration of an NLRP3 inhibitor (MCC950) to R6/2 mice suppressed the NLRP3 inflammasome, decreased IL-1β and reactive oxygen species production, and reduced neuronal toxicity, suggesting protective effects against HD. Antrodia cinnamomea is an indigenous medicinal fungus in Taiwan, which shows diverse medicinal and pharmacological activities, but its effects in HD are not well understood. Herein, we report that systematic administration of Antcin-H isolated from A. cinnamomea to R6/2 mice suppressed the NLRP3 inflammasome, IL-1β production, and reduced neuronal toxicity. Most importantly, oral administration of Antcin-H reduced disease progression by increasing neuronal survival, reducing neuroinflammation during an extended lifespan, and improving motor dysfunction in R6/2 mice. Taken together, our data suggest that Antcin-H has therapeutic potential for treating HD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信