On the Compressive Power of Autoencoders With Linear and ReLU Activation Functions.

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Liangjie Sun, Chenyao Wu, Wai-Ki Ching, Tatsuya Akutsu
{"title":"On the Compressive Power of Autoencoders With Linear and ReLU Activation Functions.","authors":"Liangjie Sun, Chenyao Wu, Wai-Ki Ching, Tatsuya Akutsu","doi":"10.1162/neco_a_01729","DOIUrl":null,"url":null,"abstract":"<p><p>In this letter, we mainly study the depth and width of autoencoders consisting of rectified linear unit (ReLU) activation functions. An autoencoder is a layered neural network consisting of an encoder, which compresses an input vector to a lower-dimensional vector, and a decoder, which transforms the low-dimensional vector back to the original input vector exactly (or approximately). In a previous study, Melkman et al. (2023) studied the depth and width of autoencoders using linear threshold activation functions with binary input and output vectors. We show that similar theoretical results hold if autoencoders using ReLU activation functions with real input and output vectors are used. Furthermore, we show that it is possible to compress input vectors to one-dimensional vectors using ReLU activation functions, although the size of compressed vectors is trivially Ω(log n) for autoencoders with linear threshold activation functions, where n is the number of input vectors. We also study the cases of linear activation functions. The results suggest that the compressive power of autoencoders using linear activation functions is considerably limited compared with those using ReLU activation functions.</p>","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":" ","pages":"1-25"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/neco_a_01729","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we mainly study the depth and width of autoencoders consisting of rectified linear unit (ReLU) activation functions. An autoencoder is a layered neural network consisting of an encoder, which compresses an input vector to a lower-dimensional vector, and a decoder, which transforms the low-dimensional vector back to the original input vector exactly (or approximately). In a previous study, Melkman et al. (2023) studied the depth and width of autoencoders using linear threshold activation functions with binary input and output vectors. We show that similar theoretical results hold if autoencoders using ReLU activation functions with real input and output vectors are used. Furthermore, we show that it is possible to compress input vectors to one-dimensional vectors using ReLU activation functions, although the size of compressed vectors is trivially Ω(log n) for autoencoders with linear threshold activation functions, where n is the number of input vectors. We also study the cases of linear activation functions. The results suggest that the compressive power of autoencoders using linear activation functions is considerably limited compared with those using ReLU activation functions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信