Super-Intense Geomagnetic Storm on 10-11 May 2024: Possible Mechanisms and Impacts.

IF 3.8 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
S Tulasi Ram, B Veenadhari, A P Dimri, J Bulusu, M Bagiya, S Gurubaran, N Parihar, B Remya, G Seemala, Rajesh Singh, S Sripathi, S V Singh, G Vichare
{"title":"Super-Intense Geomagnetic Storm on 10-11 May 2024: Possible Mechanisms and Impacts.","authors":"S Tulasi Ram, B Veenadhari, A P Dimri, J Bulusu, M Bagiya, S Gurubaran, N Parihar, B Remya, G Seemala, Rajesh Singh, S Sripathi, S V Singh, G Vichare","doi":"10.1029/2024SW004126","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most intense geomagnetic storms of recent times occurred on 10-11 May 2024. With a peak negative excursion of Sym-H below -500 nT, this storm is the second largest of the space era. Solar wind energy transferred through radiation and mass coupling affected the entire Geospace. Our study revealed that the dayside magnetopause was compressed below the geostationary orbit (6.6 RE) for continuously ∼6 hr due to strong Solar Wind Dynamic Pressure (SWDP). Tremendous compression pushed the bow-shock also to below the geostationary orbit for a few minutes. Magnetohydrodynamic models suggest that the magnetopause location could be as low as 3.3RE. We show that a unique combination of high SWDP (≥15 nPa) with an intense eastward interplanetary electric field (IEF<sub>Y</sub> ≥ 2.5 mV/m) within a super-dense Interplanetary Coronal Mass Ejection lasted for 409 min-is the key factor that led to the strong ring current at much closer to the Earth causing such an intense storm. Severe electrodynamic disturbances led to a strong positive ionospheric storm with more than 100% increase in dayside ionospheric Total Electron Content (TEC), affecting GPS positioning/navigation. Further, an HF radio blackout was found to occur in the 2-12 MHz frequency band due to strong D- and E-region ionization resulting from a solar flare prior to this storm.</p>","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"22 12","pages":"e2024SW004126"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602687/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather-The International Journal of Research and Applications","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024SW004126","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most intense geomagnetic storms of recent times occurred on 10-11 May 2024. With a peak negative excursion of Sym-H below -500 nT, this storm is the second largest of the space era. Solar wind energy transferred through radiation and mass coupling affected the entire Geospace. Our study revealed that the dayside magnetopause was compressed below the geostationary orbit (6.6 RE) for continuously ∼6 hr due to strong Solar Wind Dynamic Pressure (SWDP). Tremendous compression pushed the bow-shock also to below the geostationary orbit for a few minutes. Magnetohydrodynamic models suggest that the magnetopause location could be as low as 3.3RE. We show that a unique combination of high SWDP (≥15 nPa) with an intense eastward interplanetary electric field (IEFY ≥ 2.5 mV/m) within a super-dense Interplanetary Coronal Mass Ejection lasted for 409 min-is the key factor that led to the strong ring current at much closer to the Earth causing such an intense storm. Severe electrodynamic disturbances led to a strong positive ionospheric storm with more than 100% increase in dayside ionospheric Total Electron Content (TEC), affecting GPS positioning/navigation. Further, an HF radio blackout was found to occur in the 2-12 MHz frequency band due to strong D- and E-region ionization resulting from a solar flare prior to this storm.

2024年5月10-11日的超强地磁风暴:可能的机制和影响。
最近最强烈的地磁风暴之一发生在2024年5月10日至11日。由于Sym-H的峰值负偏移低于- 500nt,这次风暴是太空时代的第二大风暴。通过辐射和质量耦合传递的太阳风能量影响了整个地球空间。我们的研究表明,由于强烈的太阳风动压(SWDP),日侧磁层顶被压缩到地球静止轨道(6.6 RE)以下,持续约6小时。巨大的压缩将弓形激波也推到了地球静止轨道以下几分钟。磁流体动力学模型表明,磁层顶的位置可能低至3.3RE。研究表明,在持续409 min的超高密度行星际日冕物质抛射中,高SWDP(≥15 nPa)和强烈的东行星际电场(IEFY≥2.5 mV/m)的独特组合是导致离地球更近的强环电流导致如此强烈风暴的关键因素。强烈的电动力扰动导致强烈的正电离层风暴,电离层日侧总电子含量(TEC)增加100%以上,影响GPS定位/导航。此外,由于风暴之前太阳耀斑造成的强烈D区和e区电离,发现在2-12 MHz频段发生了高频无线电中断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
29.70%
发文量
166
审稿时长
>12 weeks
期刊介绍: Space Weather: The International Journal of Research and Applications (SWE) is devoted to understanding and forecasting space weather. The scope of understanding and forecasting includes: origins, propagation and interactions of solar-produced processes within geospace; interactions in Earth’s space-atmosphere interface region produced by disturbances from above and below; influences of cosmic rays on humans, hardware, and signals; and comparisons of these types of interactions and influences with the atmospheres of neighboring planets and Earth’s moon. Manuscripts should emphasize impacts on technical systems including telecommunications, transportation, electric power, satellite navigation, avionics/spacecraft design and operations, human spaceflight, and other systems. Manuscripts that describe models or space environment climatology should clearly state how the results can be applied.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信