Influence of Solar Wind High-Speed Streams on the Brazilian Low-Latitude Ionosphere During the Descending Phase of Solar Cycle 24.

IF 3.8 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
S P Moraes-Santos, C M N Cândido, F Becker-Guedes, B Nava, V Klausner, C Borries, F S Chingarandi, T O Osanyin
{"title":"Influence of Solar Wind High-Speed Streams on the Brazilian Low-Latitude Ionosphere During the Descending Phase of Solar Cycle 24.","authors":"S P Moraes-Santos, C M N Cândido, F Becker-Guedes, B Nava, V Klausner, C Borries, F S Chingarandi, T O Osanyin","doi":"10.1029/2024SW003873","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the Brazilian low-latitude ionospheric response to CIR/HSS-driven geomagnetic storms during the declining phase of solar cycle 24, from 2016 to 2017. In this period the geomagnetic storms were mostly moderate, SymH<sub>min</sub> ≈ -72 nT, AE<sub>max</sub> ≈ 1580 nT, Vsw<sub>max</sub> ≈ 690 km/s and lasted, on average, for 6 days. We analyze the variations in Vertical Total Electron Content (VTEC) at three representative regions: bele, over the equatorial region; boav and cuib, at the northern and southern crests of the Equatorial Ionization Anomaly. Our findings reveal the role of High-Speed Solar Wind Streams and Corotating Interaction Region-driven geomagnetic storms. The VTEC intensifications were up to 30 TECu, during the daytime and nighttime. Additionally, three categories of nighttime enhancements were observed and analyzed with distinct characteristics and levels of pre-reversal strengthening; Depletions up to 20 TECu also occurred during the day and nighttime. The delay between the storm commencement and the positive and negative variations were, on average, 7 and 20 hours, respectively. We discuss the Prompt Penetration Electric Fields and Disturbance Dynamo Electric Fields following the magnetic reconnection between Earth's and interplanetary magnetic field, using observational data and modeling. Furthermore, this study presents catalogs of low-latitude ionospheric storms, providing detailed information for space weather applications and ionospheric modeling.</p>","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"22 12","pages":"e2024SW003873"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604352/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather-The International Journal of Research and Applications","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024SW003873","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the Brazilian low-latitude ionospheric response to CIR/HSS-driven geomagnetic storms during the declining phase of solar cycle 24, from 2016 to 2017. In this period the geomagnetic storms were mostly moderate, SymHmin ≈ -72 nT, AEmax ≈ 1580 nT, Vswmax ≈ 690 km/s and lasted, on average, for 6 days. We analyze the variations in Vertical Total Electron Content (VTEC) at three representative regions: bele, over the equatorial region; boav and cuib, at the northern and southern crests of the Equatorial Ionization Anomaly. Our findings reveal the role of High-Speed Solar Wind Streams and Corotating Interaction Region-driven geomagnetic storms. The VTEC intensifications were up to 30 TECu, during the daytime and nighttime. Additionally, three categories of nighttime enhancements were observed and analyzed with distinct characteristics and levels of pre-reversal strengthening; Depletions up to 20 TECu also occurred during the day and nighttime. The delay between the storm commencement and the positive and negative variations were, on average, 7 and 20 hours, respectively. We discuss the Prompt Penetration Electric Fields and Disturbance Dynamo Electric Fields following the magnetic reconnection between Earth's and interplanetary magnetic field, using observational data and modeling. Furthermore, this study presents catalogs of low-latitude ionospheric storms, providing detailed information for space weather applications and ionospheric modeling.

第24太阳周期下降期太阳风高速流对巴西低纬度电离层的影响
本文研究了2016 - 2017年第24太阳周期衰退期巴西低纬度电离层对CIR/ hss驱动的地磁风暴的响应。这一时期的地磁风暴以中等强度为主,SymHmin≈-72 nT, AEmax≈1580 nT, Vswmax≈690 km/s,平均持续时间为6 d。我们分析了垂直总电子含量(VTEC)在三个代表性区域的变化:赤道地区;boav和cub,在赤道电离异常的南北波峰。我们的发现揭示了高速太阳风流和旋转相互作用在区域驱动地磁风暴中的作用。白天和夜间VTEC强度均达30 TECu。此外,观察和分析了三种夜间增强类型,它们具有不同的特征和反转前增强水平;在白天和夜间也发生了高达20 TECu的消耗。风暴开始与正负变化之间的平均延迟分别为7小时和20小时。利用观测资料和模型,讨论了地球与行星际磁场重联后的瞬发穿透电场和扰动发电机电场。此外,本研究还提供了低纬度电离层风暴的目录,为空间天气应用和电离层建模提供了详细的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
29.70%
发文量
166
审稿时长
>12 weeks
期刊介绍: Space Weather: The International Journal of Research and Applications (SWE) is devoted to understanding and forecasting space weather. The scope of understanding and forecasting includes: origins, propagation and interactions of solar-produced processes within geospace; interactions in Earth’s space-atmosphere interface region produced by disturbances from above and below; influences of cosmic rays on humans, hardware, and signals; and comparisons of these types of interactions and influences with the atmospheres of neighboring planets and Earth’s moon. Manuscripts should emphasize impacts on technical systems including telecommunications, transportation, electric power, satellite navigation, avionics/spacecraft design and operations, human spaceflight, and other systems. Manuscripts that describe models or space environment climatology should clearly state how the results can be applied.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信