Seungjae Lee, Boram Jeong, Donghwan Lee, Woojoo Lee
{"title":"Sensitivity Analysis for Effects of Multiple Exposures in the Presence of Unmeasured Confounding: Non-Gaussian and Time-to-Event Outcomes.","authors":"Seungjae Lee, Boram Jeong, Donghwan Lee, Woojoo Lee","doi":"10.1002/sim.10293","DOIUrl":null,"url":null,"abstract":"<p><p>In epidemiological studies, evaluating the health impacts stemming from multiple exposures is one of the important goals. To analyze the effects of multiple exposures on discrete or time-to-event health outcomes, researchers often employ generalized linear models, Cox proportional hazards models, and machine learning methods. However, observational studies are prone to unmeasured confounding factors, which can introduce the potential for substantial bias in the multiple exposure effects. To address this issue, we propose a novel outcome model-based sensitivity analysis method for non-Gaussian and time-to-event outcomes with multiple exposures. All the proposed sensitivity analysis problems are formulated as linear programming problems with quadratic and linear constraints, which can be solved efficiently. Analytic solutions are provided for some optimization problems, and a numerical study is performed to examine how the proposed sensitivity analysis behaves in finite samples. We illustrate the proposed method using two real data examples.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"5996-6025"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10293","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In epidemiological studies, evaluating the health impacts stemming from multiple exposures is one of the important goals. To analyze the effects of multiple exposures on discrete or time-to-event health outcomes, researchers often employ generalized linear models, Cox proportional hazards models, and machine learning methods. However, observational studies are prone to unmeasured confounding factors, which can introduce the potential for substantial bias in the multiple exposure effects. To address this issue, we propose a novel outcome model-based sensitivity analysis method for non-Gaussian and time-to-event outcomes with multiple exposures. All the proposed sensitivity analysis problems are formulated as linear programming problems with quadratic and linear constraints, which can be solved efficiently. Analytic solutions are provided for some optimization problems, and a numerical study is performed to examine how the proposed sensitivity analysis behaves in finite samples. We illustrate the proposed method using two real data examples.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.