Yasmine Guendouz, Noor Adeebah Mohamed Razif, Floriane Bernasconi, Gordon O' Brien, Robert D Johnston, Caitríona Lally
{"title":"Simulating atherosclerotic plaque mechanics using polyvinyl alcohol (PVA) cryogel artery phantoms, ultrasound imaging and inverse finite element analysis.","authors":"Yasmine Guendouz, Noor Adeebah Mohamed Razif, Floriane Bernasconi, Gordon O' Brien, Robert D Johnston, Caitríona Lally","doi":"10.1088/1361-6560/ad9a4b","DOIUrl":null,"url":null,"abstract":"<p><p>The clinical decision to establish if a patient with carotid disease should undergo surgical intervention is primarily based on the percent stenosis. Whilst this applies for high-grade stenosed vessels (>70%), it falls short for other cases. Due to the heterogeneity of plaque tissue, probing the mechanics of the tissue would likely provide further insights into why some plaques are more prone to rupture. Mechanical characterization of such tissue is nontrivial, however, due to the difficulties in collecting fresh, intact plaque tissue and using physiologically relevant mechanical testing of such material. The use of polyvinyl alcohol (PVA) cryogel is thus highly convenient because of its acoustic properties and tunable mechanical properties.<i>Methods.</i>The aim of this study is to demonstrate the potential of PVA phantoms to simulate atherosclerotic features. In addition, a testing and simulation framework is developed for full PVA vessel material characterization using ring tensile testing and inflation testing combined with non-invasive ultrasound imaging and computational modeling.<i>Results.</i>Strain stiffening behavior was observed in PVA through ring tensile tests, particularly at high (<i>n</i>= 6) freeze-thaw cycles (FTCs). Inflation testing of bi-layered phantoms featuring lipid pool inclusions demonstrated high strains at shoulder regions. The application of an inverse finite element framework successfully recovered boundaries and determined the shear moduli for the PVA wall to lie within the range 27-53 kPa.<i>Conclusion.</i>The imaging-modeling framework presented facilitates the use and characterization of arterial mimicking phantoms to further explore plaque rupture. It also shows translational potential for non-invasive mechanical characterization of atherosclerotic plaques to improve the identification of clinically relevant metrics of plaque vulnerability.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad9a4b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The clinical decision to establish if a patient with carotid disease should undergo surgical intervention is primarily based on the percent stenosis. Whilst this applies for high-grade stenosed vessels (>70%), it falls short for other cases. Due to the heterogeneity of plaque tissue, probing the mechanics of the tissue would likely provide further insights into why some plaques are more prone to rupture. Mechanical characterization of such tissue is nontrivial, however, due to the difficulties in collecting fresh, intact plaque tissue and using physiologically relevant mechanical testing of such material. The use of polyvinyl alcohol (PVA) cryogel is thus highly convenient because of its acoustic properties and tunable mechanical properties.Methods.The aim of this study is to demonstrate the potential of PVA phantoms to simulate atherosclerotic features. In addition, a testing and simulation framework is developed for full PVA vessel material characterization using ring tensile testing and inflation testing combined with non-invasive ultrasound imaging and computational modeling.Results.Strain stiffening behavior was observed in PVA through ring tensile tests, particularly at high (n= 6) freeze-thaw cycles (FTCs). Inflation testing of bi-layered phantoms featuring lipid pool inclusions demonstrated high strains at shoulder regions. The application of an inverse finite element framework successfully recovered boundaries and determined the shear moduli for the PVA wall to lie within the range 27-53 kPa.Conclusion.The imaging-modeling framework presented facilitates the use and characterization of arterial mimicking phantoms to further explore plaque rupture. It also shows translational potential for non-invasive mechanical characterization of atherosclerotic plaques to improve the identification of clinically relevant metrics of plaque vulnerability.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry