RADD-CycleGAN: unsupervised reconstruction of high-quality ultrasound image based on CycleGAN with residual attention and dual-domain discrimination.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Mateng Si, Musheng Wu, Qing Wang
{"title":"RADD-CycleGAN: unsupervised reconstruction of high-quality ultrasound image based on CycleGAN with residual attention and dual-domain discrimination.","authors":"Mateng Si, Musheng Wu, Qing Wang","doi":"10.1088/1361-6560/ad997f","DOIUrl":null,"url":null,"abstract":"<p><p>Plane wave (PW) imaging is fast, but limited by poor imaging quality. Coherent PW compounding (CPWC) improves image quality but decrease frame rate. In this study, we propose a modified CycleGAN model that combines a residual attention module with a space-frequency dual-domain discriminator, termed RADD-CycleGAN, to rapidly reconstruct high-quality ultrasound images. To enhance the ability to reconstruct image details, we specially design a process of hybrid dynamic and static channel selection followed by the frequency domain discriminator. The low-quality images are generated by the 3-angle CPWC, while the high-quality images are generated as real images (ground truth) by the 75-angle CPWC. The training set includes unpaired images, whereas the images in the test set are paired to verify the validity and superiority of the proposed model. Finally, we respectively design ablation and comparison experiments to evaluate the model performance. Compared with the basic CycleGAN, our proposed method reaches a better performance, with a 7.8% increase in the peak signal-to-noise ratio and a 22.2% increase in the structural similarity index measure. The experimental results show that our method achieves the best unsupervised reconstruction from low quality images in comparison with several state-of-the-art methods.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad997f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Plane wave (PW) imaging is fast, but limited by poor imaging quality. Coherent PW compounding (CPWC) improves image quality but decrease frame rate. In this study, we propose a modified CycleGAN model that combines a residual attention module with a space-frequency dual-domain discriminator, termed RADD-CycleGAN, to rapidly reconstruct high-quality ultrasound images. To enhance the ability to reconstruct image details, we specially design a process of hybrid dynamic and static channel selection followed by the frequency domain discriminator. The low-quality images are generated by the 3-angle CPWC, while the high-quality images are generated as real images (ground truth) by the 75-angle CPWC. The training set includes unpaired images, whereas the images in the test set are paired to verify the validity and superiority of the proposed model. Finally, we respectively design ablation and comparison experiments to evaluate the model performance. Compared with the basic CycleGAN, our proposed method reaches a better performance, with a 7.8% increase in the peak signal-to-noise ratio and a 22.2% increase in the structural similarity index measure. The experimental results show that our method achieves the best unsupervised reconstruction from low quality images in comparison with several state-of-the-art methods.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信