Effect of the oblique incidence of radiation beams on emerging radiation behind lead and concrete shields: a multilayer method for dose transmission calculations.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Antonio González-López
{"title":"Effect of the oblique incidence of radiation beams on emerging radiation behind lead and concrete shields: a multilayer method for dose transmission calculations.","authors":"Antonio González-López","doi":"10.1088/1361-6560/ad9a4c","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. For calculating shielding in x-ray rooms, it is often assumed that the beams impinge perpendicularly on the protective barriers. This is not always true, but this premise simplifies the calculations and enhances protection by being a conservative calculation. In this work, a method for calculating radiation transmission through planar shielding that considers the obliquity of the incident beam is presented.<i>Approach</i>. The output of the method produces energy spectra according to the direction of radiation impinging on the shielding. Four angles of incidence on the barrier are considered, along with monoenergetic pencil beams with energies ranging from 10 to 150 keV and two materials: lead and concrete. The direction of emerging photons is discretized into 49 different direction vectors. Monte Carlo calculations are performed for thicknesses of 0.1, 0.5, and 1.0 mm of lead, and 1, 5, 10, and 15 cm of concrete. Additionally, a multilayer iterative method is implemented for calculating attenuation of other thicknesses.<i>Main results</i>. The distribution of radiant energy according to the coordinates of its directional vector illustrates the effect of the obliquity of the incidence and the significance of the shielding material employed. In the case of concrete, the dispersion of radiation away from the original direction of incidence is much more pronounced than in the case of lead at energies below its K-edge. The multilayer iterative method provides highly accurate values of transmitted radiant energy in both monoenergetic and polyenergetic beams, for both lead and concrete, across the various studied incidence directions.<i>Significance</i>. Considering the direction of the photons reaching a shield and the direction of the photons passing through it allows multilayer composite shielding calculations to closely approximate the calculation made for the composite shielding.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad9a4c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective. For calculating shielding in x-ray rooms, it is often assumed that the beams impinge perpendicularly on the protective barriers. This is not always true, but this premise simplifies the calculations and enhances protection by being a conservative calculation. In this work, a method for calculating radiation transmission through planar shielding that considers the obliquity of the incident beam is presented.Approach. The output of the method produces energy spectra according to the direction of radiation impinging on the shielding. Four angles of incidence on the barrier are considered, along with monoenergetic pencil beams with energies ranging from 10 to 150 keV and two materials: lead and concrete. The direction of emerging photons is discretized into 49 different direction vectors. Monte Carlo calculations are performed for thicknesses of 0.1, 0.5, and 1.0 mm of lead, and 1, 5, 10, and 15 cm of concrete. Additionally, a multilayer iterative method is implemented for calculating attenuation of other thicknesses.Main results. The distribution of radiant energy according to the coordinates of its directional vector illustrates the effect of the obliquity of the incidence and the significance of the shielding material employed. In the case of concrete, the dispersion of radiation away from the original direction of incidence is much more pronounced than in the case of lead at energies below its K-edge. The multilayer iterative method provides highly accurate values of transmitted radiant energy in both monoenergetic and polyenergetic beams, for both lead and concrete, across the various studied incidence directions.Significance. Considering the direction of the photons reaching a shield and the direction of the photons passing through it allows multilayer composite shielding calculations to closely approximate the calculation made for the composite shielding.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信