Plasma-activated media selectively induces apoptotic death via an orchestrated oxidative stress pathway in high-grade serous ovarian cancer cells.

IF 6.6 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology
Lorena T Davies, Raja Ganesen, John Toubia, Sung-Ha Hong, Sushil Kumar Kc, Martin K Oehler, Carmela Ricciardelli, Endre J Szili, Nirmal Robinson, Melissa R Pitman
{"title":"Plasma-activated media selectively induces apoptotic death via an orchestrated oxidative stress pathway in high-grade serous ovarian cancer cells.","authors":"Lorena T Davies, Raja Ganesen, John Toubia, Sung-Ha Hong, Sushil Kumar Kc, Martin K Oehler, Carmela Ricciardelli, Endre J Szili, Nirmal Robinson, Melissa R Pitman","doi":"10.1002/1878-0261.13768","DOIUrl":null,"url":null,"abstract":"<p><p>High-grade serous ovarian cancer (HGSOC) is the most common and aggressive type of ovarian cancer. Due to a lack of an early detection test and overt symptoms, many patients are diagnosed at a late stage where metastasis makes treatment very challenging. Furthermore, the current standard treatment for HGSOC patients, consisting of debulking surgery and platinum-taxane chemotherapy, reduces quality of life due to debilitating side-effects. Sadly, 80-90% of patients diagnosed with advanced stage ovarian cancer will die due to treatment resistance. As such, novel therapeutic strategies for HGSOC that are both more effective and less toxic are urgently required. Here we describe the assessment of cold atmospheric pressure (CAP) gas discharge technology as a novel treatment strategy in pre-clinical models of HGSOC. Plasma-activated media (PAM) was generated using cell growth media. HGSOC cell lines, patient ascites cells and primary tissue explants were tested for their response to PAM via analysis of cell viability, cell death and oxidative stress assays. Our data show that PAM treatment can be more effective than standard carboplatin chemotherapy at selectively targeting ovarian cancer cells in primary patient samples. Further, we also observed PAM to induce apoptosis in HGSOC cancer cell lines via induction of oxidative stress and mitochondrial-mediated apoptosis. These findings suggest that PAM is a viable therapeutic strategy to test in in vivo models of ovarian cancer, with a view to develop an intraperitoneal PAM-based therapy for HGSOC patients. Our studies validate the ability of PAM to selectively target tumour tissue and ascites cells. This work supports the development of PAM towards in vivo validation and translation into clinical practice.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.13768","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

High-grade serous ovarian cancer (HGSOC) is the most common and aggressive type of ovarian cancer. Due to a lack of an early detection test and overt symptoms, many patients are diagnosed at a late stage where metastasis makes treatment very challenging. Furthermore, the current standard treatment for HGSOC patients, consisting of debulking surgery and platinum-taxane chemotherapy, reduces quality of life due to debilitating side-effects. Sadly, 80-90% of patients diagnosed with advanced stage ovarian cancer will die due to treatment resistance. As such, novel therapeutic strategies for HGSOC that are both more effective and less toxic are urgently required. Here we describe the assessment of cold atmospheric pressure (CAP) gas discharge technology as a novel treatment strategy in pre-clinical models of HGSOC. Plasma-activated media (PAM) was generated using cell growth media. HGSOC cell lines, patient ascites cells and primary tissue explants were tested for their response to PAM via analysis of cell viability, cell death and oxidative stress assays. Our data show that PAM treatment can be more effective than standard carboplatin chemotherapy at selectively targeting ovarian cancer cells in primary patient samples. Further, we also observed PAM to induce apoptosis in HGSOC cancer cell lines via induction of oxidative stress and mitochondrial-mediated apoptosis. These findings suggest that PAM is a viable therapeutic strategy to test in in vivo models of ovarian cancer, with a view to develop an intraperitoneal PAM-based therapy for HGSOC patients. Our studies validate the ability of PAM to selectively target tumour tissue and ascites cells. This work supports the development of PAM towards in vivo validation and translation into clinical practice.

血浆激活介质通过精心安排的氧化应激途径选择性诱导高级别浆液性卵巢癌细胞的凋亡死亡。
高级别浆液性卵巢癌(HGSOC)是最常见和最具侵袭性的卵巢癌类型。由于缺乏早期检测测试和明显的症状,许多患者被诊断为晚期,转移使得治疗非常具有挑战性。此外,目前HGSOC患者的标准治疗,包括减容手术和铂-紫杉烷化疗,由于衰弱的副作用,降低了生活质量。可悲的是,80-90%的晚期卵巢癌患者将因治疗耐药性而死亡。因此,迫切需要更有效、毒性更小的新型HGSOC治疗策略。在这里,我们描述了冷大气压(CAP)气体排放技术作为HGSOC临床前模型的一种新的治疗策略的评估。利用细胞生长培养基制备等离子体活化培养基(PAM)。通过细胞活力、细胞死亡和氧化应激分析,检测HGSOC细胞系、患者腹水细胞和原代组织外植体对PAM的反应。我们的数据表明,在选择性靶向原发性患者样本中的卵巢癌细胞方面,PAM治疗比标准卡铂化疗更有效。此外,我们还观察到PAM通过诱导氧化应激和线粒体介导的凋亡诱导HGSOC癌细胞凋亡。这些发现表明,PAM是一种可行的治疗策略,可以在卵巢癌体内模型中进行测试,以期开发一种基于腹腔注射PAM的治疗HGSOC患者的方法。我们的研究证实了PAM选择性靶向肿瘤组织和腹水细胞的能力。这项工作支持了PAM在体内验证和转化为临床实践的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Oncology
Molecular Oncology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍: Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles. The journal is now fully Open Access with all articles published over the past 10 years freely available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信