TAZ-hTrap: A Rationally Designed, Disulfide-Stapled Tead Helical Hairpin Trap to Selectively Capture Hippo Signaling Taz With Potent Antigynecological Tumor Activity.

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Molecular Recognition Pub Date : 2025-03-01 Epub Date: 2024-12-03 DOI:10.1002/jmr.3111
Bin Tang, Yu Du, Jun Wang
{"title":"TAZ-hTrap: A Rationally Designed, Disulfide-Stapled Tead Helical Hairpin Trap to Selectively Capture Hippo Signaling Taz With Potent Antigynecological Tumor Activity.","authors":"Bin Tang, Yu Du, Jun Wang","doi":"10.1002/jmr.3111","DOIUrl":null,"url":null,"abstract":"<p><p>Transcriptional enhanced associate domain (Tead)-mediated Hippo signaling pathway regulates diverse physiological processes; its dysfunction has been implicated in an increasing number of human gynecological cancers. The transcriptional coactivator with PDZ-binding motif (Taz) binds to and then activates Tead through forming a three-helix bundle (THB) at their complex interface. The THB is defined by a double-helical hairpin from Tead and a single α-helix from Taz, serving as the key interaction hotspot between Tead and Taz. In the present study, the helical hairpin was derived from Tead protein to generate a hairpin segment, which is a 25-mer polypeptide consisting of a longer helical arm-1 and a shorter helical arm-2 as well as a flexible loop linker between them. Dynamics simulation and energetics characterization revealed that the hairpin peptide is intrinsically disordered when splitting from its protein context, thus incurring a large entropy penalty upon binding to Taz α-helix. A disulfide bridge was introduced across the two helical arms of hairpin peptide to obtain a strong binder termed TAZ-hTrap, which can maintain in a considerably structured, native-like conformation in unbound state, and the entropy penalty was minimized by disulfide stapling to effectively improve its affinity toward the α-helix. These computational findings can be further substantiated by circular dichroism and fluorescence polarization at molecular level, and viability assay also observed a potent cytotoxic effect on diverse human gynecological tumors at cellular level. In addition, we further demonstrated that the TAZ-hTrap has a good selectivity for its cognate Taz over other noncognate proteins that share a high conservation with the Taz α-helix.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":" ","pages":"e3111"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jmr.3111","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transcriptional enhanced associate domain (Tead)-mediated Hippo signaling pathway regulates diverse physiological processes; its dysfunction has been implicated in an increasing number of human gynecological cancers. The transcriptional coactivator with PDZ-binding motif (Taz) binds to and then activates Tead through forming a three-helix bundle (THB) at their complex interface. The THB is defined by a double-helical hairpin from Tead and a single α-helix from Taz, serving as the key interaction hotspot between Tead and Taz. In the present study, the helical hairpin was derived from Tead protein to generate a hairpin segment, which is a 25-mer polypeptide consisting of a longer helical arm-1 and a shorter helical arm-2 as well as a flexible loop linker between them. Dynamics simulation and energetics characterization revealed that the hairpin peptide is intrinsically disordered when splitting from its protein context, thus incurring a large entropy penalty upon binding to Taz α-helix. A disulfide bridge was introduced across the two helical arms of hairpin peptide to obtain a strong binder termed TAZ-hTrap, which can maintain in a considerably structured, native-like conformation in unbound state, and the entropy penalty was minimized by disulfide stapling to effectively improve its affinity toward the α-helix. These computational findings can be further substantiated by circular dichroism and fluorescence polarization at molecular level, and viability assay also observed a potent cytotoxic effect on diverse human gynecological tumors at cellular level. In addition, we further demonstrated that the TAZ-hTrap has a good selectivity for its cognate Taz over other noncognate proteins that share a high conservation with the Taz α-helix.

Taz - htrap:一个合理设计的,二硫化物钉头的螺旋发夹陷阱,选择性捕获具有有效抗妇科肿瘤活性的河马信号Taz。
转录增强关联域介导的Hippo信号通路调控多种生理过程;它的功能障碍与越来越多的人类妇科癌症有关。具有pdz结合基序(Taz)的转录辅激活子通过在其复杂界面上形成三螺旋束(THB)结合并激活Tead。THB由一个来自Tead的双螺旋发夹和一个来自Taz的单α-螺旋定义,是Tead和Taz之间的关键相互作用热点。在本研究中,我们从Tead蛋白中衍生出螺旋发夹,生成了一个发夹片段,它是一个由较长的螺旋臂-1和较短的螺旋臂-2组成的25聚合体多肽,它们之间有一个柔性的环连接体。动力学模拟和能量学表征表明,发夹肽从其蛋白质环境分裂时本质上是无序的,因此在与Taz α-螺旋结合时产生了很大的熵惩罚。在发夹肽的两个螺旋臂上引入二硫桥,得到一种名为TAZ-hTrap的强结合剂,该结合剂在未结合状态下可以保持相当结构化的原生构象,并且通过二硫钉接最小化熵惩罚,有效地提高了其对α-螺旋的亲和力。这些计算结果可以在分子水平上通过圆二色性和荧光偏振进一步证实,并且在细胞水平上,活力测定也观察到对多种人类妇科肿瘤的强细胞毒性作用。此外,我们进一步证明了Taz - htrap对其同源Taz具有良好的选择性,而不是其他与Taz α-螺旋具有高度保守性的非同源蛋白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Recognition
Journal of Molecular Recognition 生物-生化与分子生物学
CiteScore
4.60
自引率
3.70%
发文量
68
审稿时长
2.7 months
期刊介绍: Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches. The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信