{"title":"TAZ-hTrap: A Rationally Designed, Disulfide-Stapled Tead Helical Hairpin Trap to Selectively Capture Hippo Signaling Taz With Potent Antigynecological Tumor Activity.","authors":"Bin Tang, Yu Du, Jun Wang","doi":"10.1002/jmr.3111","DOIUrl":null,"url":null,"abstract":"<p><p>Transcriptional enhanced associate domain (Tead)-mediated Hippo signaling pathway regulates diverse physiological processes; its dysfunction has been implicated in an increasing number of human gynecological cancers. The transcriptional coactivator with PDZ-binding motif (Taz) binds to and then activates Tead through forming a three-helix bundle (THB) at their complex interface. The THB is defined by a double-helical hairpin from Tead and a single α-helix from Taz, serving as the key interaction hotspot between Tead and Taz. In the present study, the helical hairpin was derived from Tead protein to generate a hairpin segment, which is a 25-mer polypeptide consisting of a longer helical arm-1 and a shorter helical arm-2 as well as a flexible loop linker between them. Dynamics simulation and energetics characterization revealed that the hairpin peptide is intrinsically disordered when splitting from its protein context, thus incurring a large entropy penalty upon binding to Taz α-helix. A disulfide bridge was introduced across the two helical arms of hairpin peptide to obtain a strong binder termed TAZ-hTrap, which can maintain in a considerably structured, native-like conformation in unbound state, and the entropy penalty was minimized by disulfide stapling to effectively improve its affinity toward the α-helix. These computational findings can be further substantiated by circular dichroism and fluorescence polarization at molecular level, and viability assay also observed a potent cytotoxic effect on diverse human gynecological tumors at cellular level. In addition, we further demonstrated that the TAZ-hTrap has a good selectivity for its cognate Taz over other noncognate proteins that share a high conservation with the Taz α-helix.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":" ","pages":"e3111"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jmr.3111","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transcriptional enhanced associate domain (Tead)-mediated Hippo signaling pathway regulates diverse physiological processes; its dysfunction has been implicated in an increasing number of human gynecological cancers. The transcriptional coactivator with PDZ-binding motif (Taz) binds to and then activates Tead through forming a three-helix bundle (THB) at their complex interface. The THB is defined by a double-helical hairpin from Tead and a single α-helix from Taz, serving as the key interaction hotspot between Tead and Taz. In the present study, the helical hairpin was derived from Tead protein to generate a hairpin segment, which is a 25-mer polypeptide consisting of a longer helical arm-1 and a shorter helical arm-2 as well as a flexible loop linker between them. Dynamics simulation and energetics characterization revealed that the hairpin peptide is intrinsically disordered when splitting from its protein context, thus incurring a large entropy penalty upon binding to Taz α-helix. A disulfide bridge was introduced across the two helical arms of hairpin peptide to obtain a strong binder termed TAZ-hTrap, which can maintain in a considerably structured, native-like conformation in unbound state, and the entropy penalty was minimized by disulfide stapling to effectively improve its affinity toward the α-helix. These computational findings can be further substantiated by circular dichroism and fluorescence polarization at molecular level, and viability assay also observed a potent cytotoxic effect on diverse human gynecological tumors at cellular level. In addition, we further demonstrated that the TAZ-hTrap has a good selectivity for its cognate Taz over other noncognate proteins that share a high conservation with the Taz α-helix.
期刊介绍:
Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches.
The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.