Accuracy, Reproducibility, and Responsiveness to Treatment of Home Spirometry in Cystic Fibrosis: Multicenter, Retrospective, Observational Study.

IF 5.8 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Martinus C Oppelaar, Hanneke Ac van Helvoort, Michiel Age Bannier, Monique He Reijers, Hester van der Vaart, Renske van der Meer, Josje Altenburg, Lennart Conemans, Bart L Rottier, Marianne Nuijsink, Lara S van den Wijngaart, Peter Jfm Merkus, Jolt Roukema
{"title":"Accuracy, Reproducibility, and Responsiveness to Treatment of Home Spirometry in Cystic Fibrosis: Multicenter, Retrospective, Observational Study.","authors":"Martinus C Oppelaar, Hanneke Ac van Helvoort, Michiel Age Bannier, Monique He Reijers, Hester van der Vaart, Renske van der Meer, Josje Altenburg, Lennart Conemans, Bart L Rottier, Marianne Nuijsink, Lara S van den Wijngaart, Peter Jfm Merkus, Jolt Roukema","doi":"10.2196/60892","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Portable spirometers are increasingly used to measure lung function at home, but doubts about the accuracy of these devices persist. These doubts stand in the way of the digital transition of chronic respiratory disease care, hence there is a need to address the accuracy of home spirometry in routine care across multiple settings and ages.</p><p><strong>Objective: </strong>This study aimed to assess the accuracy, reproducibility, and responsiveness to the treatment of home spirometry in long-term pediatric and adult cystic fibrosis care.</p><p><strong>Methods: </strong>This retrospective observational study was carried out in 5 Dutch cystic fibrosis centers. Home spirometry outcomes (forced expiratory volume in one second [FEV<sub>1</sub>], and forced vital capacity [FVC]) for 601 anonymized users were collected during 3 years. For 81 users, data on clinic spirometry and elexacaftor/tezacaftor/ivacaftor (ETI) use were available. Accuracy was assessed using Bland-Altman plots for paired clinic-home measurements on the same day and within 7 days of each other (nearest neighbor). Intratest reproducibility was assessed using the American Thoracic Society/European Respiratory Society repeatability criteria, the coefficient of variation, and spirometry quality grades. Responsiveness was measured by the percentage change in home spirometry outcomes after the start of ETI.</p><p><strong>Results: </strong>Bland-Altman analysis was performed for 86 same-day clinic-home spirometry pairs and for 263 nearest neighbor clinic-home spirometry pairs (n=81). For both sets and for both FEV<sub>1</sub> and FVC, no heteroscedasticity was present and hence the mean bias was expressed as an absolute value. Overall, home spirometry was significantly lower than clinic spirometry (mean ΔFEV<sub>1clinic-home</sub> 0.13 L, 95% CI 0.10 to 0.19; mean ΔFVC<sub>clinic-home</sub> 0.20 L, 95% CI 0.14 to 0.25) and remained lower than clinic spirometry independent of age and experience. One-way ANOVA with post hoc comparisons showed significantly lower differences in clinic-home spirometry in adults than in children (Δmean 0.11, 95% CI -0.20 to -0.01) and teenagers (Δmean 0.14, 95% CI -0.25 to -0.02). For reproducibility analyses, 2669 unique measurement days of 311 individuals were included. Overall, 87.3% (2331/2669) of FEV<sub>1</sub> measurements and 74.3% (1985/2669) of FVC measurements met reproducibility criteria. Kruskal-Wallis with pairwise comparison demonstrated that for both FVC and FEV<sub>1</sub>, coefficient of variation was significantly lower in adults than in children and teenagers. A total of 5104 unique home measurements were graded. Grade E was given to 2435 tests as only one home measurement was performed. Of the remaining 2669 tests, 43.8% (1168/2669) and 43.6% (1163/2669) received grade A and B, respectively. The median percentage change in FEV<sub>1</sub> from baseline after initiation of ETI was 19.2% after 7-14 days and remained stable thereafter (n=33).</p><p><strong>Conclusions: </strong>Home spirometry is feasible but not equal to clinic spirometry. Home spirometry can confirm whether lung functions remain stable, but the context of measurement and personal trends are more relevant than absolute outcomes.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"26 ","pages":"e60892"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/60892","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Portable spirometers are increasingly used to measure lung function at home, but doubts about the accuracy of these devices persist. These doubts stand in the way of the digital transition of chronic respiratory disease care, hence there is a need to address the accuracy of home spirometry in routine care across multiple settings and ages.

Objective: This study aimed to assess the accuracy, reproducibility, and responsiveness to the treatment of home spirometry in long-term pediatric and adult cystic fibrosis care.

Methods: This retrospective observational study was carried out in 5 Dutch cystic fibrosis centers. Home spirometry outcomes (forced expiratory volume in one second [FEV1], and forced vital capacity [FVC]) for 601 anonymized users were collected during 3 years. For 81 users, data on clinic spirometry and elexacaftor/tezacaftor/ivacaftor (ETI) use were available. Accuracy was assessed using Bland-Altman plots for paired clinic-home measurements on the same day and within 7 days of each other (nearest neighbor). Intratest reproducibility was assessed using the American Thoracic Society/European Respiratory Society repeatability criteria, the coefficient of variation, and spirometry quality grades. Responsiveness was measured by the percentage change in home spirometry outcomes after the start of ETI.

Results: Bland-Altman analysis was performed for 86 same-day clinic-home spirometry pairs and for 263 nearest neighbor clinic-home spirometry pairs (n=81). For both sets and for both FEV1 and FVC, no heteroscedasticity was present and hence the mean bias was expressed as an absolute value. Overall, home spirometry was significantly lower than clinic spirometry (mean ΔFEV1clinic-home 0.13 L, 95% CI 0.10 to 0.19; mean ΔFVCclinic-home 0.20 L, 95% CI 0.14 to 0.25) and remained lower than clinic spirometry independent of age and experience. One-way ANOVA with post hoc comparisons showed significantly lower differences in clinic-home spirometry in adults than in children (Δmean 0.11, 95% CI -0.20 to -0.01) and teenagers (Δmean 0.14, 95% CI -0.25 to -0.02). For reproducibility analyses, 2669 unique measurement days of 311 individuals were included. Overall, 87.3% (2331/2669) of FEV1 measurements and 74.3% (1985/2669) of FVC measurements met reproducibility criteria. Kruskal-Wallis with pairwise comparison demonstrated that for both FVC and FEV1, coefficient of variation was significantly lower in adults than in children and teenagers. A total of 5104 unique home measurements were graded. Grade E was given to 2435 tests as only one home measurement was performed. Of the remaining 2669 tests, 43.8% (1168/2669) and 43.6% (1163/2669) received grade A and B, respectively. The median percentage change in FEV1 from baseline after initiation of ETI was 19.2% after 7-14 days and remained stable thereafter (n=33).

Conclusions: Home spirometry is feasible but not equal to clinic spirometry. Home spirometry can confirm whether lung functions remain stable, but the context of measurement and personal trends are more relevant than absolute outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.40
自引率
5.40%
发文量
654
审稿时长
1 months
期刊介绍: The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades. As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor. Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信