{"title":"Biomedical document-level relation extraction with thematic capture and localized entity pooling","authors":"Yuqing Li, Xinhui Shao","doi":"10.1016/j.jbi.2024.104756","DOIUrl":null,"url":null,"abstract":"<div><div>In contrast to sentence-level relational extraction, document-level relation extraction poses greater challenges as a document typically contains multiple entities, and one entity may be associated with multiple other entities. Existing methods often rely on graph structures to capture path representations between entity pairs. However, this paper introduces a novel approach called local entity pooling that solely relies on the pre-training model to identify the bridge entity related to the current entity pair and generate the reasoning path representation. This technique effectively mitigates the multi-entity problem. Additionally, the model leverages the multi-entity and multi-label characteristics of the document to acquire the document’s thematic representation, thereby enhancing the document-level relation extraction task. Experimental evaluations conducted on two biomedical datasets, CDR and GDA. Our TCLEP (<strong>T</strong>hematic <strong>C</strong>apture and <strong>L</strong>ocalized <strong>E</strong>ntity <strong>P</strong>ooling) model achieved the Macro-F1 scores of 71.7% and 85.3%, respectively. Simultaneously, we incorporated local entity pooling and thematic capture modules into the state-of-the-art model, resulting in performance improvements of 1.5% and 0.2% on the respective datasets. These results highlight the advanced performance of our proposed approach.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"160 ","pages":"Article 104756"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424001746","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In contrast to sentence-level relational extraction, document-level relation extraction poses greater challenges as a document typically contains multiple entities, and one entity may be associated with multiple other entities. Existing methods often rely on graph structures to capture path representations between entity pairs. However, this paper introduces a novel approach called local entity pooling that solely relies on the pre-training model to identify the bridge entity related to the current entity pair and generate the reasoning path representation. This technique effectively mitigates the multi-entity problem. Additionally, the model leverages the multi-entity and multi-label characteristics of the document to acquire the document’s thematic representation, thereby enhancing the document-level relation extraction task. Experimental evaluations conducted on two biomedical datasets, CDR and GDA. Our TCLEP (Thematic Capture and Localized Entity Pooling) model achieved the Macro-F1 scores of 71.7% and 85.3%, respectively. Simultaneously, we incorporated local entity pooling and thematic capture modules into the state-of-the-art model, resulting in performance improvements of 1.5% and 0.2% on the respective datasets. These results highlight the advanced performance of our proposed approach.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.