Mechanistic study of the regulation of mitochondrial function by the GPNMB/Nrf2/NF-κB signaling pathway mediated by Quzhi Tang to alleviate chondrocyte senescence.

IF 4.8 2区 医学 Q1 CHEMISTRY, MEDICINAL
Lishi Jie, Chaofeng Zhang, Yujiang Liu, Zeling Huang, Bo Xu, Zaishi Zhu, Yuwei Li, Peimin Wang, Xiaoqing Shi
{"title":"Mechanistic study of the regulation of mitochondrial function by the GPNMB/Nrf2/NF-κB signaling pathway mediated by Quzhi Tang to alleviate chondrocyte senescence.","authors":"Lishi Jie, Chaofeng Zhang, Yujiang Liu, Zeling Huang, Bo Xu, Zaishi Zhu, Yuwei Li, Peimin Wang, Xiaoqing Shi","doi":"10.1016/j.jep.2024.119165","DOIUrl":null,"url":null,"abstract":"<p><strong>Ethnopharmacological relevance: </strong>Quzhi Tang (QZT) is a compound formula consisting of six traditional Chinese medicinal herbs. It has achieved good clinical results in the treatment of knee osteoarthritis (KOA), and the potential drug mechanisms involved are worth exploring in depth.</p><p><strong>Materials and methods: </strong>Using single-cell transcriptome analysis, this study identified the key target of senescence, GPNMB. Then, it investigated the mechanism by which QZT regulates the GPNMB/Nrf2/NF-κB signaling pathway to repair mitochondrial damage and ameliorate the process of chondrocyte senescence.</p><p><strong>Results: </strong>We collected cartilage tissues from mice and identified GPNMB as a key target of chondrocyte senescence by combining transcriptomics, histopathology, molecular biology, and immunology methods. The effects of QZT on the level of chondrocyte senescence in mice and its ameliorative effect on KOA were studied. In in vivo experiments, we explored the mechanism of GPNMB in the development of senescence in detail and revealed that, after siRNA-GPNMB interference, chondrocytes exhibited reduced impairment of mitochondrial function and senescence under equal amounts of stimuli, increasing Nrf2 expression and reducing NF-κB expression. In addition, the level of oxidative stress increased in chondrocytes overexpressing GPNMB after lentiviral infiltration, aggravating the impairment of mitochondrial function. After treatment with QZT, chondrocytes overexpressing GPNMB were able to increase Nrf2 expression, decrease NF-κB expression, repair mitochondrial damage, and improve the degree of chondrocyte aging.</p><p><strong>Conclusion: </strong>We concluded that the GPNMB/Nrf2/NF-κB signaling pathway plays an important role in chondrocyte senescence and that QZT was able to reduce intracellular oxidative stress and restore impaired mitochondrial function by regulating the expression level of the GPNMB/Nrf2/NF-κB signaling pathway, reducing the level of chondrocyte senescence in the KOA process.</p>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":" ","pages":"119165"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jep.2024.119165","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ethnopharmacological relevance: Quzhi Tang (QZT) is a compound formula consisting of six traditional Chinese medicinal herbs. It has achieved good clinical results in the treatment of knee osteoarthritis (KOA), and the potential drug mechanisms involved are worth exploring in depth.

Materials and methods: Using single-cell transcriptome analysis, this study identified the key target of senescence, GPNMB. Then, it investigated the mechanism by which QZT regulates the GPNMB/Nrf2/NF-κB signaling pathway to repair mitochondrial damage and ameliorate the process of chondrocyte senescence.

Results: We collected cartilage tissues from mice and identified GPNMB as a key target of chondrocyte senescence by combining transcriptomics, histopathology, molecular biology, and immunology methods. The effects of QZT on the level of chondrocyte senescence in mice and its ameliorative effect on KOA were studied. In in vivo experiments, we explored the mechanism of GPNMB in the development of senescence in detail and revealed that, after siRNA-GPNMB interference, chondrocytes exhibited reduced impairment of mitochondrial function and senescence under equal amounts of stimuli, increasing Nrf2 expression and reducing NF-κB expression. In addition, the level of oxidative stress increased in chondrocytes overexpressing GPNMB after lentiviral infiltration, aggravating the impairment of mitochondrial function. After treatment with QZT, chondrocytes overexpressing GPNMB were able to increase Nrf2 expression, decrease NF-κB expression, repair mitochondrial damage, and improve the degree of chondrocyte aging.

Conclusion: We concluded that the GPNMB/Nrf2/NF-κB signaling pathway plays an important role in chondrocyte senescence and that QZT was able to reduce intracellular oxidative stress and restore impaired mitochondrial function by regulating the expression level of the GPNMB/Nrf2/NF-κB signaling pathway, reducing the level of chondrocyte senescence in the KOA process.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of ethnopharmacology
Journal of ethnopharmacology 医学-全科医学与补充医学
CiteScore
10.30
自引率
5.60%
发文量
967
审稿时长
77 days
期刊介绍: The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信