{"title":"Transcriptomic analysis of key genes and signaling pathways in sepsis-associated intestinal mucosal barrier damage.","authors":"Zhao Gao, Zhiyuan Gong, Hai Huang, Xuemeng Ren, Zhenlu Li, Peng Gao","doi":"10.1016/j.gene.2024.149137","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The aim is to analyze differentially expressed genes (DEGs) in mice with sepsis-related intestinal mucosal barrier damage and to explore the diagnostic and protective mechanisms of this condition at the transcriptome level.</p><p><strong>Methods: </strong>Small intestinal tissues from healthy male C57BL/6J mice subjected to Cecal ligation and puncture (CLP) and sham operation were collected. High-throughput sequencing was performed using the paired-end sequencing mode of the Illumina HiSeq platform. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted on the differentially expressed genes (DEGs). A protein-protein interaction (PPI) network was constructed using the STRING database, and hub genes were identified with Cytoscape. These hub genes were then validated using quantitative real-time polymerase chain reaction (RT-qPCR).</p><p><strong>Results: </strong>A total of 239 DEGs were identified, with 49 upregulated and 130 downregulated genes. KEGG enrichment analysis showed that these DEGs were primarily involved in cytokine-cytokine receptor interaction, Th1 and Th2 cell differentiation, viral protein interactions with cytokines and their receptors, and the IL-17 signaling pathway. The top 10 hub genes were selected using the cytoHubba plugin. Experimental validation confirmed that the expression levels of TBX21, CSF3, IL-6, CXCR3, and CXCL9 matched the sequencing results.</p><p><strong>Conclusion: </strong>TBX21, CSF3, IL-6,CXCR3, and CXCL9 may be potential biological markers for the diagnosis and treatment the sepsis-associated intestinal mucosal barrier.</p>","PeriodicalId":12499,"journal":{"name":"Gene","volume":"936 ","pages":"149137"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gene.2024.149137","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The aim is to analyze differentially expressed genes (DEGs) in mice with sepsis-related intestinal mucosal barrier damage and to explore the diagnostic and protective mechanisms of this condition at the transcriptome level.
Methods: Small intestinal tissues from healthy male C57BL/6J mice subjected to Cecal ligation and puncture (CLP) and sham operation were collected. High-throughput sequencing was performed using the paired-end sequencing mode of the Illumina HiSeq platform. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted on the differentially expressed genes (DEGs). A protein-protein interaction (PPI) network was constructed using the STRING database, and hub genes were identified with Cytoscape. These hub genes were then validated using quantitative real-time polymerase chain reaction (RT-qPCR).
Results: A total of 239 DEGs were identified, with 49 upregulated and 130 downregulated genes. KEGG enrichment analysis showed that these DEGs were primarily involved in cytokine-cytokine receptor interaction, Th1 and Th2 cell differentiation, viral protein interactions with cytokines and their receptors, and the IL-17 signaling pathway. The top 10 hub genes were selected using the cytoHubba plugin. Experimental validation confirmed that the expression levels of TBX21, CSF3, IL-6, CXCR3, and CXCL9 matched the sequencing results.
Conclusion: TBX21, CSF3, IL-6,CXCR3, and CXCL9 may be potential biological markers for the diagnosis and treatment the sepsis-associated intestinal mucosal barrier.
期刊介绍:
Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.