{"title":"MicroRNA-34a-5p regulates agouti-related peptide via krüppel-like factor 4 and is disrupted by bisphenol A in hypothalamic neurons.","authors":"Minyi Yu, Wenyuan He, Denise D Belsham","doi":"10.1016/j.gene.2024.149129","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is a complex disease marked by increased adiposity and impaired metabolic function. While diet and lifestyle are primary causes, endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), significantly contribute to obesity. BPA, found in plastic consumer products, accumulates in the hypothalamus and dysregulates energy homeostasis by disrupting the neuropeptide Y (NPY)/agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) neurons. However, the precise molecular mechanisms of how BPA disrupts neuropeptide expression remains unclear. We hypothesized that microRNAs (miRNAs), which regulate approximately 60% of the human protein-coding genome and are crucial for hypothalamic energy regulation, may mediate the effects of BPA on Agrp. Using the TargetScanMouse 8.0 and DIANA microT bioinformatics tools, we identified miR-501-5p as a potential miRNA that directly regulates Agrp and the miR-34 family as miRNAs that indirectly regulate Agrp through its transcription factor krüppel-like factor 4 (KLF4). We found that in an immortalized NPY/AgRP-expressing cell line, mHypoE-41, miR-501-5p unexpectedly upregulated Agrp, while miR-34a-5p reduced Klf4 and Agrp mRNA levels. Serum starvation reduced miR-34a-5p levels and elevated Agrp mRNA levels, suggesting a potential role in AgRP regulation. Inhibiting the miR-34a-5p interaction with the Klf4 3'UTR using a specific target site blocker prevented the downregulation of both Klf4 and Agrp, suggesting miR-34a-5p alters Agrp mRNA levels via regulation of KLF4. BPA treatment increased Agrp and Klf4 expression while simultaneously decreasing miR-34a-5p levels, indicating miR-34a-5p may play a role in BPA-mediated dysregulation of Agrp. Overall, this study highlights indirect miRNA-based regulation of Agrp, which can also be dysregulated by obesogens, such as BPA.</p>","PeriodicalId":12499,"journal":{"name":"Gene","volume":" ","pages":"149129"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gene.2024.149129","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity is a complex disease marked by increased adiposity and impaired metabolic function. While diet and lifestyle are primary causes, endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), significantly contribute to obesity. BPA, found in plastic consumer products, accumulates in the hypothalamus and dysregulates energy homeostasis by disrupting the neuropeptide Y (NPY)/agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) neurons. However, the precise molecular mechanisms of how BPA disrupts neuropeptide expression remains unclear. We hypothesized that microRNAs (miRNAs), which regulate approximately 60% of the human protein-coding genome and are crucial for hypothalamic energy regulation, may mediate the effects of BPA on Agrp. Using the TargetScanMouse 8.0 and DIANA microT bioinformatics tools, we identified miR-501-5p as a potential miRNA that directly regulates Agrp and the miR-34 family as miRNAs that indirectly regulate Agrp through its transcription factor krüppel-like factor 4 (KLF4). We found that in an immortalized NPY/AgRP-expressing cell line, mHypoE-41, miR-501-5p unexpectedly upregulated Agrp, while miR-34a-5p reduced Klf4 and Agrp mRNA levels. Serum starvation reduced miR-34a-5p levels and elevated Agrp mRNA levels, suggesting a potential role in AgRP regulation. Inhibiting the miR-34a-5p interaction with the Klf4 3'UTR using a specific target site blocker prevented the downregulation of both Klf4 and Agrp, suggesting miR-34a-5p alters Agrp mRNA levels via regulation of KLF4. BPA treatment increased Agrp and Klf4 expression while simultaneously decreasing miR-34a-5p levels, indicating miR-34a-5p may play a role in BPA-mediated dysregulation of Agrp. Overall, this study highlights indirect miRNA-based regulation of Agrp, which can also be dysregulated by obesogens, such as BPA.
期刊介绍:
Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.