Man Anh Huynh, Dang Thi Phuong Thao, Hideki Yoshida
{"title":"The anillin knockdown in the Drosophila nervous system shows locomotor and learning defects.","authors":"Man Anh Huynh, Dang Thi Phuong Thao, Hideki Yoshida","doi":"10.1016/j.yexcr.2024.114364","DOIUrl":null,"url":null,"abstract":"<p><p>Anillin (Ani) is an evolutionarily conserved protein with a multi-domain structure that cross-links cytoskeletal proteins and plays an essential role in the formation of the contractile ring during cytokinesis. However, Ani is highly expressed in the human central nervous system (CNS), and it scaffolds myelin in the CNS of mice and modulates neuronal migration and growth in Caenorhabditis elegans. Although Ani is also highly expressed in the Drosophila CNS, its role remains unclear. In the present study, we showed that Ani is not only highly expressed in larval neuroblasts of the CNS, but also weakly expressed in the neuromuscular junction (NMJ) and axons. In addition, the ani knockdown in the nervous system led to pupal lethality, larval locomotor defects, and learning disability, along with abnormal morphology of the NMJ and distribution patterns of the mature neuropil in the CNS. These results show that Ani plays an important role also in the Drosophila nervous system.</p>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":" ","pages":"114364"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.yexcr.2024.114364","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Anillin (Ani) is an evolutionarily conserved protein with a multi-domain structure that cross-links cytoskeletal proteins and plays an essential role in the formation of the contractile ring during cytokinesis. However, Ani is highly expressed in the human central nervous system (CNS), and it scaffolds myelin in the CNS of mice and modulates neuronal migration and growth in Caenorhabditis elegans. Although Ani is also highly expressed in the Drosophila CNS, its role remains unclear. In the present study, we showed that Ani is not only highly expressed in larval neuroblasts of the CNS, but also weakly expressed in the neuromuscular junction (NMJ) and axons. In addition, the ani knockdown in the nervous system led to pupal lethality, larval locomotor defects, and learning disability, along with abnormal morphology of the NMJ and distribution patterns of the mature neuropil in the CNS. These results show that Ani plays an important role also in the Drosophila nervous system.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.