Evaluation of the standard battery of in vitro genotoxicity tests to predict in vivo genotoxicity through mathematical modeling: A report from the 8th International Workshop on Genotoxicity Testing.

IF 2.3 4区 医学 Q3 ENVIRONMENTAL SCIENCES
Mirjam Luijten, Jan van Benthem, Takeshi Morita, Raffaella Corvi, Patricia A Escobar, Yurika Fujita, Jennifer Hemmerich, Naveed Honarvar, David Kirkland, Naoki Koyama, David P Lovell, Miriam Mathea, Andrew Williams, Stephen Dertinger, Stefan Pfuhler, Jeroen L A Pennings
{"title":"Evaluation of the standard battery of in vitro genotoxicity tests to predict in vivo genotoxicity through mathematical modeling: A report from the 8th International Workshop on Genotoxicity Testing.","authors":"Mirjam Luijten, Jan van Benthem, Takeshi Morita, Raffaella Corvi, Patricia A Escobar, Yurika Fujita, Jennifer Hemmerich, Naveed Honarvar, David Kirkland, Naoki Koyama, David P Lovell, Miriam Mathea, Andrew Williams, Stephen Dertinger, Stefan Pfuhler, Jeroen L A Pennings","doi":"10.1002/em.22640","DOIUrl":null,"url":null,"abstract":"<p><p>In human health risk assessment of chemicals and pharmaceuticals, identification of genotoxicity hazard usually starts with a standard battery of in vitro genotoxicity tests, which is needed to cover all genotoxicity endpoints. The individual tests included in the battery are not designed to pick up all endpoints. This explains why resulting data can appear contradictory, thereby complicating accurate interpretation of the findings. Such interpretation could be improved through application of mathematical modeling. One of the advantages of mathematical modeling is that the strengths and weaknesses of each test are taken into account. Furthermore, the generated predictions are objective and convey the associated uncertainties. This approach was explored by the working group \"Predictivity of In Vitro Genotoxicity Testing,\" convened in the context of the 8th International Workshop on Genotoxicity Testing (IWGT). Specifically, we applied mathematical modeling to a database with publicly available in vitro and in vivo data for genotoxicity. The results indicate that a mammalian in vitro clastogenicity test and a mammalian cell gene mutation test together provide strong predictive weight-of-evidence for evaluating genotoxic hazard of a substance, although they are better in predicting absence of genotoxic potential than in predicting presence of genotoxic potential. Remarkably, the bacterial reverse mutation (Ames) test did not significantly change these predictions when used in combination with in vitro mutagenicity and clastogenicity tests using cells of mammalian origin. However, in case only data from a bacterial reverse mutation test are available for the assessment of genotoxic potential, these do bear weight of evidence and thus can be used. Genotoxicity assays are generally executed in tiers, in which the bacterial reverse mutation test often is the starting point. Thus, it is reasonable to suspect that early in development test results from the bacterial reverse mutation test have influenced the composition of the database studied here. We performed several tests on the robustness of the database used for the analyses presented here, and the forthcoming results do not indicate a strong bias. Further research comparing in vitro genotoxicity data with in vivo data for additional compounds will provide more insights whether it is indeed time to reconsider the composition of the standard in vitro genotoxicity battery.</p>","PeriodicalId":11791,"journal":{"name":"Environmental and Molecular Mutagenesis","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Molecular Mutagenesis","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/em.22640","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In human health risk assessment of chemicals and pharmaceuticals, identification of genotoxicity hazard usually starts with a standard battery of in vitro genotoxicity tests, which is needed to cover all genotoxicity endpoints. The individual tests included in the battery are not designed to pick up all endpoints. This explains why resulting data can appear contradictory, thereby complicating accurate interpretation of the findings. Such interpretation could be improved through application of mathematical modeling. One of the advantages of mathematical modeling is that the strengths and weaknesses of each test are taken into account. Furthermore, the generated predictions are objective and convey the associated uncertainties. This approach was explored by the working group "Predictivity of In Vitro Genotoxicity Testing," convened in the context of the 8th International Workshop on Genotoxicity Testing (IWGT). Specifically, we applied mathematical modeling to a database with publicly available in vitro and in vivo data for genotoxicity. The results indicate that a mammalian in vitro clastogenicity test and a mammalian cell gene mutation test together provide strong predictive weight-of-evidence for evaluating genotoxic hazard of a substance, although they are better in predicting absence of genotoxic potential than in predicting presence of genotoxic potential. Remarkably, the bacterial reverse mutation (Ames) test did not significantly change these predictions when used in combination with in vitro mutagenicity and clastogenicity tests using cells of mammalian origin. However, in case only data from a bacterial reverse mutation test are available for the assessment of genotoxic potential, these do bear weight of evidence and thus can be used. Genotoxicity assays are generally executed in tiers, in which the bacterial reverse mutation test often is the starting point. Thus, it is reasonable to suspect that early in development test results from the bacterial reverse mutation test have influenced the composition of the database studied here. We performed several tests on the robustness of the database used for the analyses presented here, and the forthcoming results do not indicate a strong bias. Further research comparing in vitro genotoxicity data with in vivo data for additional compounds will provide more insights whether it is indeed time to reconsider the composition of the standard in vitro genotoxicity battery.

通过数学模型评估体外遗传毒性测试的标准电池以预测体内遗传毒性:来自第八届国际遗传毒性测试研讨会的报告。
在化学品和药品的人类健康风险评估中,遗传毒性危害的确定通常从一系列标准的体外遗传毒性试验开始,这些试验需要涵盖所有遗传毒性终点。电池中包含的单个测试并非设计用于拾取所有端点。这就解释了为什么结果数据可能出现矛盾,从而使对研究结果的准确解释变得复杂。这种解释可以通过应用数学建模来改进。数学建模的优点之一是考虑到每个测试的优缺点。此外,生成的预测是客观的,并传达了相关的不确定性。在第八届国际遗传毒性测试研讨会(IWGT)的背景下,“体外遗传毒性测试的预测性”工作组探讨了这种方法。具体来说,我们将数学模型应用于一个数据库,该数据库包含了公开可用的体外和体内遗传毒性数据。结果表明,哺乳动物体外破胚性试验和哺乳动物细胞基因突变试验共同为评估物质的遗传毒性危害提供了强有力的预测证据权重,尽管它们在预测不存在遗传毒性潜在方面比预测存在遗传毒性潜在方面更好。值得注意的是,当使用哺乳动物细胞进行体外诱变和致裂试验时,细菌反向突变(Ames)试验并没有显著改变这些预测。然而,如果只有细菌反向突变试验的数据可用于评估基因毒性潜力,这些数据确实具有证据的重要性,因此可以使用。遗传毒性试验通常分阶段进行,其中细菌反向突变试验通常是起点。因此,我们有理由怀疑细菌反向突变试验的早期发育测试结果影响了本文研究的数据库的组成。我们对用于本文分析的数据库的稳健性进行了几次测试,即将到来的结果并未显示出强烈的偏差。进一步的研究将其他化合物的体外遗传毒性数据与体内数据进行比较,将提供更多的见解,是否确实是时候重新考虑标准体外遗传毒性电池的组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
10.70%
发文量
52
审稿时长
12-24 weeks
期刊介绍: Environmental and Molecular Mutagenesis publishes original research manuscripts, reviews and commentaries on topics related to six general areas, with an emphasis on subject matter most suited for the readership of EMM as outlined below. The journal is intended for investigators in fields such as molecular biology, biochemistry, microbiology, genetics and epigenetics, genomics and epigenomics, cancer research, neurobiology, heritable mutation, radiation biology, toxicology, and molecular & environmental epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信