Deep Stroop: Integrating eye tracking and speech processing to characterize people with neurodegenerative disorders while performing neuropsychological tests.

IF 7 2区 医学 Q1 BIOLOGY
Computers in biology and medicine Pub Date : 2025-01-01 Epub Date: 2024-12-01 DOI:10.1016/j.compbiomed.2024.109398
Trevor Meyer, Anna Favaro, Esther S Oh, Ankur Butala, Chelsie Motley, Pedro Irazoqui, Najim Dehak, Laureano Moro-Velázquez
{"title":"Deep Stroop: Integrating eye tracking and speech processing to characterize people with neurodegenerative disorders while performing neuropsychological tests.","authors":"Trevor Meyer, Anna Favaro, Esther S Oh, Ankur Butala, Chelsie Motley, Pedro Irazoqui, Najim Dehak, Laureano Moro-Velázquez","doi":"10.1016/j.compbiomed.2024.109398","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases (NDs) can be difficult to precisely characterize and monitor as they present complex and overlapping signs despite affecting different neural circuits. Neuropsychological tests are important tools for assessing signs, but only considering patient-generated output can limit insight. Here, we present an improvement to the neuropsychological test evaluation paradigm by deeply characterizing patient interaction and behavior during tests based on multiple perspectives alongside typically evaluated output by performing multi-modal analysis of eye movement and speech data. Using the well-known Stroop Test, we compare behaviors of healthy controls to patients with Alzheimer's Disease (AD), Mild Cognitive Impairment, Parkinson's Disease (PD), and secondary Parkinsonism. We maximize accessibility and reproducibility by automatically extracting metrics, including eye motor behavior, speech patterns, and multimodal interplay, with almost no human input required. We find many metrics including increased horizontal saccade distances sensitive to all NDs, delayed task initiation in AD, response error patterns and blinking patterns that differ between AD and PD. Our metrics show both significantly different distributions between disease groups and simultaneous correlation with the MoCA and MDS-UPDRS-III clinical rating scales. Our findings show the utility of incorporating several perspectives into one output representation, as our metric breadth creates unique sign profiles that quantify and visualize a patient's dysfunction. These metrics provide much better sign characterization between diseases and correlation with disease severity than traditional Stroop measures. This methodology offers the potential to expand its application to other traditional neuropsychological tests, shifting the paradigm in diagnostic precision for NDs and advancing patient care.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"184 ","pages":"109398"},"PeriodicalIF":7.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109398","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodegenerative diseases (NDs) can be difficult to precisely characterize and monitor as they present complex and overlapping signs despite affecting different neural circuits. Neuropsychological tests are important tools for assessing signs, but only considering patient-generated output can limit insight. Here, we present an improvement to the neuropsychological test evaluation paradigm by deeply characterizing patient interaction and behavior during tests based on multiple perspectives alongside typically evaluated output by performing multi-modal analysis of eye movement and speech data. Using the well-known Stroop Test, we compare behaviors of healthy controls to patients with Alzheimer's Disease (AD), Mild Cognitive Impairment, Parkinson's Disease (PD), and secondary Parkinsonism. We maximize accessibility and reproducibility by automatically extracting metrics, including eye motor behavior, speech patterns, and multimodal interplay, with almost no human input required. We find many metrics including increased horizontal saccade distances sensitive to all NDs, delayed task initiation in AD, response error patterns and blinking patterns that differ between AD and PD. Our metrics show both significantly different distributions between disease groups and simultaneous correlation with the MoCA and MDS-UPDRS-III clinical rating scales. Our findings show the utility of incorporating several perspectives into one output representation, as our metric breadth creates unique sign profiles that quantify and visualize a patient's dysfunction. These metrics provide much better sign characterization between diseases and correlation with disease severity than traditional Stroop measures. This methodology offers the potential to expand its application to other traditional neuropsychological tests, shifting the paradigm in diagnostic precision for NDs and advancing patient care.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信