BHBA-GRNet: Cancer detection through improved gene expression profiling using Binary Honey Badger Algorithm and Gene Residual-based Network.

IF 7 2区 医学 Q1 BIOLOGY
Computers in biology and medicine Pub Date : 2025-01-01 Epub Date: 2024-11-29 DOI:10.1016/j.compbiomed.2024.109348
Reza Nourian, Seyed Ahmad Motamedi, Mohammadreza Pourfard
{"title":"BHBA-GRNet: Cancer detection through improved gene expression profiling using Binary Honey Badger Algorithm and Gene Residual-based Network.","authors":"Reza Nourian, Seyed Ahmad Motamedi, Mohammadreza Pourfard","doi":"10.1016/j.compbiomed.2024.109348","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer, a pervasive and devastating disease, remains a leading global cause of mortality, emphasizing the growing urgency for effective detection methods. Gene Expression Microarray (GEM) data has emerged as a crucial tool in this context, offering insights into early cancer detection and treatment. While deep learning methods offer promise in detecting various cancers through GEM analysis, they suffer from high dimensionality inherent in gene sequences, preventing optimal detection performance across diverse cancer types. Additionally, existing methods often resort to synthetic features and data augmentation to enhance performance. To address these challenges and enhance accuracy, a novel Binary Honey Badger Algorithm (BHBA) integrated with the Gene Residual Network (GRNet) method has been proposed. Our approach capitalizes on BHBA's feature reduction mechanism, eliminating the need for additional preprocessing steps. Comprehensive evaluations on three well-established datasets representing lung and blood-type cancers demonstrate that our method reduces GEM data size by approximately 40 % and achieves a superior accuracy improvement of around 1 % in lung cancer types compared to state-of-the-art methods.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"184 ","pages":"109348"},"PeriodicalIF":7.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109348","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer, a pervasive and devastating disease, remains a leading global cause of mortality, emphasizing the growing urgency for effective detection methods. Gene Expression Microarray (GEM) data has emerged as a crucial tool in this context, offering insights into early cancer detection and treatment. While deep learning methods offer promise in detecting various cancers through GEM analysis, they suffer from high dimensionality inherent in gene sequences, preventing optimal detection performance across diverse cancer types. Additionally, existing methods often resort to synthetic features and data augmentation to enhance performance. To address these challenges and enhance accuracy, a novel Binary Honey Badger Algorithm (BHBA) integrated with the Gene Residual Network (GRNet) method has been proposed. Our approach capitalizes on BHBA's feature reduction mechanism, eliminating the need for additional preprocessing steps. Comprehensive evaluations on three well-established datasets representing lung and blood-type cancers demonstrate that our method reduces GEM data size by approximately 40 % and achieves a superior accuracy improvement of around 1 % in lung cancer types compared to state-of-the-art methods.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信