Dynamic modeling of antibody repertoire reshaping in response to viral infections.

IF 7 2区 医学 Q1 BIOLOGY
Computers in biology and medicine Pub Date : 2025-01-01 Epub Date: 2024-12-01 DOI:10.1016/j.compbiomed.2024.109475
Zhaobin Xu, Qingzhi Peng, Junxiao Xu, Hongmei Zhang, Jian Song, Dongqing Wei, Qiangcheng Zeng
{"title":"Dynamic modeling of antibody repertoire reshaping in response to viral infections.","authors":"Zhaobin Xu, Qingzhi Peng, Junxiao Xu, Hongmei Zhang, Jian Song, Dongqing Wei, Qiangcheng Zeng","doi":"10.1016/j.compbiomed.2024.109475","DOIUrl":null,"url":null,"abstract":"<p><p>For decades, research has largely focused on the generation of high-affinity, antigen-specific antibodies during viral infections. This emphasis has made it challenging for immunologists to systematically evaluate the mechanisms initiating humoral immunity in specific immune responses. In this study, we employ ordinary differential equations (ODE) to investigate the dynamic reshaping of the entire antibody repertoire in response to viral infections. Our findings demonstrate that the host's antibody atlas undergoes significant restructuring during these infections by the selective expansion of antibody pools with strong binding activity. The simulation results indicate that the ELISA (Enzyme-Linked Immunosorbent Assay) outcomes do not directly reflect the levels of specific neutralizing antibodies, but rather represent a quantitative response of the reshaped antibody repertoire following infection. Our model transcends traditional theories of immune memory, providing an explanation for the sustained presence of specific antibodies in the human body in long term. Additionally, our model extends to explore the mechanistic basis of the original antigenic sin, providing practical applications of our framework. One important application of this model is that it indicates that antibodies with a faster forward binding rate are more effective in preventing and treating associated viral infections compared to those with higher binding affinity.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"184 ","pages":"109475"},"PeriodicalIF":7.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109475","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

For decades, research has largely focused on the generation of high-affinity, antigen-specific antibodies during viral infections. This emphasis has made it challenging for immunologists to systematically evaluate the mechanisms initiating humoral immunity in specific immune responses. In this study, we employ ordinary differential equations (ODE) to investigate the dynamic reshaping of the entire antibody repertoire in response to viral infections. Our findings demonstrate that the host's antibody atlas undergoes significant restructuring during these infections by the selective expansion of antibody pools with strong binding activity. The simulation results indicate that the ELISA (Enzyme-Linked Immunosorbent Assay) outcomes do not directly reflect the levels of specific neutralizing antibodies, but rather represent a quantitative response of the reshaped antibody repertoire following infection. Our model transcends traditional theories of immune memory, providing an explanation for the sustained presence of specific antibodies in the human body in long term. Additionally, our model extends to explore the mechanistic basis of the original antigenic sin, providing practical applications of our framework. One important application of this model is that it indicates that antibodies with a faster forward binding rate are more effective in preventing and treating associated viral infections compared to those with higher binding affinity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信