Design of a Low-Complexity Deep Learning Model for Diagnosis of Type 2 Diabetes.

IF 2.4 Q3 ENDOCRINOLOGY & METABOLISM
Soroush Soltanizadeh, Majid Mobini, Seyedeh Somayeh Naghibi
{"title":"Design of a Low-Complexity Deep Learning Model for Diagnosis of Type 2 Diabetes.","authors":"Soroush Soltanizadeh, Majid Mobini, Seyedeh Somayeh Naghibi","doi":"10.2174/0115733998307556240819093038","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recent research demonstrates that diabetes can lead to heart problems, neurological damage, and other illnesses.</p><p><strong>Method: </strong>In this paper, we design a low-complexity Deep Learning (DL)-based model for the diagnosis of type 2 diabetes. In our experiments, we use the publicly available PIMA Indian Diabetes Dataset (PIDD). To obtain a low-complexity and accurate DL architecture, we perform an accuracy-versus-complexity study on several DL models.</p><p><strong>Result: </strong>The results show that the proposed DL structure, including Convolutional Neural Networks and Multi-Layer Perceptron models (i.e., CNN+MLP model) outperforms other models with an accuracy of 93.89%.</p><p><strong>Conclusion: </strong>With these features, the proposed hybrid model can be used in wearable devices and IoT-based health monitoring applications.</p>","PeriodicalId":10825,"journal":{"name":"Current diabetes reviews","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current diabetes reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115733998307556240819093038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Recent research demonstrates that diabetes can lead to heart problems, neurological damage, and other illnesses.

Method: In this paper, we design a low-complexity Deep Learning (DL)-based model for the diagnosis of type 2 diabetes. In our experiments, we use the publicly available PIMA Indian Diabetes Dataset (PIDD). To obtain a low-complexity and accurate DL architecture, we perform an accuracy-versus-complexity study on several DL models.

Result: The results show that the proposed DL structure, including Convolutional Neural Networks and Multi-Layer Perceptron models (i.e., CNN+MLP model) outperforms other models with an accuracy of 93.89%.

Conclusion: With these features, the proposed hybrid model can be used in wearable devices and IoT-based health monitoring applications.

用于2型糖尿病诊断的低复杂度深度学习模型设计。
背景:最近的研究表明,糖尿病会导致心脏问题、神经损伤和其他疾病。方法:在本文中,我们设计了一个基于低复杂度深度学习(DL)的2型糖尿病诊断模型。在我们的实验中,我们使用了公开可用的PIMA印度糖尿病数据集(PIDD)。为了获得低复杂性和精确的深度学习架构,我们对几个深度学习模型进行了精度与复杂性的研究。结果:本文提出的深度学习结构包括卷积神经网络和多层感知器模型(即CNN+MLP模型),其准确率达到93.89%,优于其他模型。结论:该混合模型具有以上特点,可用于可穿戴设备和基于物联网的健康监测应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current diabetes reviews
Current diabetes reviews ENDOCRINOLOGY & METABOLISM-
CiteScore
6.30
自引率
0.00%
发文量
158
期刊介绍: Current Diabetes Reviews publishes frontier reviews on all the latest advances on diabetes and its related areas e.g. pharmacology, pathogenesis, complications, epidemiology, clinical care, and therapy. The journal"s aim is to publish the highest quality review articles dedicated to clinical research in the field. The journal is essential reading for all researchers and clinicians who are involved in the field of diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信