Deciphering the Interlinked CXCR4-Mediated Feedback Loop Among Signaling Pathways in Diabetic Wound Healing.

IF 2.4 Q3 ENDOCRINOLOGY & METABOLISM
K Sandhanam, Bedanta Bhattacharjee, Damanbhalang Rynjah, Pratap Kalita, Saikat Sen, Raja Chakraborty
{"title":"Deciphering the Interlinked CXCR4-Mediated Feedback Loop Among Signaling Pathways in Diabetic Wound Healing.","authors":"K Sandhanam, Bedanta Bhattacharjee, Damanbhalang Rynjah, Pratap Kalita, Saikat Sen, Raja Chakraborty","doi":"10.2174/0115733998335873241012161428","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic chronic wounds and amputations are very serious complications of diabetes mellitus (DM) that result from an integration factor, including oxygen deprivation, elevated reactive oxygen species (ROS), reduced angiogenesis, and microbial invasion. These causative factors lead to tenacious wounds in an inflammatory state, which eventually results in tissue aging and necrosis. Wound healing in DM potentially targets C-X-C chemokine receptor type 4 (CXCR4) regulates several signalling pathways. The CXCR4 signalling pathway integrated with phospholipase C (PLC)/protein kinase-C (PKC) Ca2+ pathways, stromal cell-derived factor-1 (SDF-1), and mitogen- activated protein kinases (MAPKs) pathway for enhancing cell chemotaxis, proliferation, and survival. The dysregulated CXCR4 pathway is connected with poor wound healing in DM patients. Therapeutic strategies targeting CXCR4-based molecules such as UCUF-728, UCUF-965, and AMD3100 have been shown to enhance diabetic wound healing by altering miRNA expression, promoting angiogenesis, and accelerating wound closure. This study indicates that CXCR4 participation in various signalling pathways makes it essential for Understanding the healing of diabetic wounds. Using specific compounds to target CXCR4 offers a potentially effective treatment strategy to improve wound healing in diabetes. Our understanding of CXCR4 signalling and its regulation processes will enable us to develop more potent wound care solutions for diabetic chronic wounds. This report concludes that CXCR4's potential therapeutic targeting shows improvements in diabetic wound repair. This review will demonstrate that CXCR4 plays a major role in wound healing through its various signalling pathways. Targeting CXCR4 with certain agonist molecules shows a therapeutic approach to potentially increasing wound healing in diabetes. By enhancing our understanding of the CXCR4 signalling mechanism in future studies, we can develop more potential treatments for chronic diabetic wounds.</p>","PeriodicalId":10825,"journal":{"name":"Current diabetes reviews","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current diabetes reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115733998335873241012161428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic chronic wounds and amputations are very serious complications of diabetes mellitus (DM) that result from an integration factor, including oxygen deprivation, elevated reactive oxygen species (ROS), reduced angiogenesis, and microbial invasion. These causative factors lead to tenacious wounds in an inflammatory state, which eventually results in tissue aging and necrosis. Wound healing in DM potentially targets C-X-C chemokine receptor type 4 (CXCR4) regulates several signalling pathways. The CXCR4 signalling pathway integrated with phospholipase C (PLC)/protein kinase-C (PKC) Ca2+ pathways, stromal cell-derived factor-1 (SDF-1), and mitogen- activated protein kinases (MAPKs) pathway for enhancing cell chemotaxis, proliferation, and survival. The dysregulated CXCR4 pathway is connected with poor wound healing in DM patients. Therapeutic strategies targeting CXCR4-based molecules such as UCUF-728, UCUF-965, and AMD3100 have been shown to enhance diabetic wound healing by altering miRNA expression, promoting angiogenesis, and accelerating wound closure. This study indicates that CXCR4 participation in various signalling pathways makes it essential for Understanding the healing of diabetic wounds. Using specific compounds to target CXCR4 offers a potentially effective treatment strategy to improve wound healing in diabetes. Our understanding of CXCR4 signalling and its regulation processes will enable us to develop more potent wound care solutions for diabetic chronic wounds. This report concludes that CXCR4's potential therapeutic targeting shows improvements in diabetic wound repair. This review will demonstrate that CXCR4 plays a major role in wound healing through its various signalling pathways. Targeting CXCR4 with certain agonist molecules shows a therapeutic approach to potentially increasing wound healing in diabetes. By enhancing our understanding of the CXCR4 signalling mechanism in future studies, we can develop more potential treatments for chronic diabetic wounds.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current diabetes reviews
Current diabetes reviews ENDOCRINOLOGY & METABOLISM-
CiteScore
6.30
自引率
0.00%
发文量
158
期刊介绍: Current Diabetes Reviews publishes frontier reviews on all the latest advances on diabetes and its related areas e.g. pharmacology, pathogenesis, complications, epidemiology, clinical care, and therapy. The journal"s aim is to publish the highest quality review articles dedicated to clinical research in the field. The journal is essential reading for all researchers and clinicians who are involved in the field of diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信