Single-cell view and a novel protective macrophage subset in perivascular adipose tissue in T2DM.

IF 9.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jiaxuan Li, Zhenyu Tian, Tongxue Zhang, Jiajia Jin, Xinjie Zhang, Panpan Xie, Haiyan Lin, Junfei Gu, Yingjie Wu, Xiaowei Wang, Shucui Zhang, Xuefang Yan, Dong Guo, Zhe Wang, Qunye Zhang
{"title":"Single-cell view and a novel protective macrophage subset in perivascular adipose tissue in T2DM.","authors":"Jiaxuan Li, Zhenyu Tian, Tongxue Zhang, Jiajia Jin, Xinjie Zhang, Panpan Xie, Haiyan Lin, Junfei Gu, Yingjie Wu, Xiaowei Wang, Shucui Zhang, Xuefang Yan, Dong Guo, Zhe Wang, Qunye Zhang","doi":"10.1186/s11658-024-00668-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Vasculopathy underlies diabetic complications, with perivascular adipose tissue (PVAT) playing crucial roles in its development. However, the changes in the cellular composition and function of PVAT, including the specific cell subsets and mechanisms implicated in type 2 diabetes mellitus (T2DM) vasculopathy, remain unclear.</p><p><strong>Methods: </strong>To address the above issues, we performed single-cell RNA sequencing on the stromal vascular fraction (SVF) of PVAT from normal and T2DM rats. Then, various bioinformatics tools and functional experiments were used to investigate the characteristic changes in the cellular profile of diabetic PVAT SVF, their implications, and the underlying mechanisms.</p><p><strong>Results: </strong>Our study reveals the single-cell landscape of the SVF of PVAT, demonstrating its considerable heterogeneity and significant alterations in T2DM, including an enhanced inflammatory response and elevated proportions of macrophages and natural killer (NK) cells. Moreover, macrophages are critical hubs for cross-talk among various cell populations. Notably, we identified a decreased Pdpn<sup>+</sup> macrophage subpopulation in the PVAT of T2DM rats and confirmed this in mice and humans. In vitro and in vivo studies demonstrated that Pdpn<sup>+</sup> macrophages alleviated insulin resistance and modulated adipokine/cytokine expression in adipocytes via the Pla2g2d-DHA/EPA-GPR120 pathway. This subset also enhances the function of vascular endothelial and smooth muscle cells, inhibits vascular inflammation and oxidative stress, and improves vasodilatory function, thereby protecting blood vessels.</p><p><strong>Conclusion: </strong>Pdpn<sup>+</sup> macrophages exhibit significant vascular protective effects by alleviating insulin resistance and modulating adipokine/cytokine expression in PVAT adipocytes. This macrophage subtype may therefore play pivotal roles in mitigating vascular complications in T2DM. Our findings also underscore the critical role of immune-metabolic cross-talk in maintaining tissue homeostasis.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"148"},"PeriodicalIF":9.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616190/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular & Molecular Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s11658-024-00668-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Vasculopathy underlies diabetic complications, with perivascular adipose tissue (PVAT) playing crucial roles in its development. However, the changes in the cellular composition and function of PVAT, including the specific cell subsets and mechanisms implicated in type 2 diabetes mellitus (T2DM) vasculopathy, remain unclear.

Methods: To address the above issues, we performed single-cell RNA sequencing on the stromal vascular fraction (SVF) of PVAT from normal and T2DM rats. Then, various bioinformatics tools and functional experiments were used to investigate the characteristic changes in the cellular profile of diabetic PVAT SVF, their implications, and the underlying mechanisms.

Results: Our study reveals the single-cell landscape of the SVF of PVAT, demonstrating its considerable heterogeneity and significant alterations in T2DM, including an enhanced inflammatory response and elevated proportions of macrophages and natural killer (NK) cells. Moreover, macrophages are critical hubs for cross-talk among various cell populations. Notably, we identified a decreased Pdpn+ macrophage subpopulation in the PVAT of T2DM rats and confirmed this in mice and humans. In vitro and in vivo studies demonstrated that Pdpn+ macrophages alleviated insulin resistance and modulated adipokine/cytokine expression in adipocytes via the Pla2g2d-DHA/EPA-GPR120 pathway. This subset also enhances the function of vascular endothelial and smooth muscle cells, inhibits vascular inflammation and oxidative stress, and improves vasodilatory function, thereby protecting blood vessels.

Conclusion: Pdpn+ macrophages exhibit significant vascular protective effects by alleviating insulin resistance and modulating adipokine/cytokine expression in PVAT adipocytes. This macrophage subtype may therefore play pivotal roles in mitigating vascular complications in T2DM. Our findings also underscore the critical role of immune-metabolic cross-talk in maintaining tissue homeostasis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular & Molecular Biology Letters
Cellular & Molecular Biology Letters 生物-生化与分子生物学
CiteScore
11.60
自引率
13.30%
发文量
101
审稿时长
3 months
期刊介绍: Cellular & Molecular Biology Letters is an international journal dedicated to the dissemination of fundamental knowledge in all areas of cellular and molecular biology, cancer cell biology, and certain aspects of biochemistry, biophysics and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信