Zero-determinant strategy for distributed state estimation against eavesdropping attacks.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2024-12-01 DOI:10.1063/5.0235693
Yan Yu, Wen Yang, Jialing Chen
{"title":"Zero-determinant strategy for distributed state estimation against eavesdropping attacks.","authors":"Yan Yu, Wen Yang, Jialing Chen","doi":"10.1063/5.0235693","DOIUrl":null,"url":null,"abstract":"<p><p>In distributed networks, the transmission of state estimates via wireless channels between neighbor nodes is susceptible to interception by eavesdroppers, leading to significant risks to data privacy. Given the substantial energy and bandwidth consumption of data encryption, sensors with limited energy must strategically decide when to encrypt data. Simultaneously, eavesdroppers with similar energy constraints must determine when to intercept transmissions. In this paper, we propose a game-theoretic approach to this security dilemma and introduce a defense strategy based on zero-determinant (ZD) policies. Initially, we model the interaction between sensors and malicious eavesdroppers in the distributed state estimation as an iterative game. Subsequently, we apply ZD strategies to protect both channel and node data, respectively. We further explore how, under these strategies, sensors can unilaterally set the expected payoff of eavesdroppers or coerce a positive correlation with the expected payoff of sensors. Moreover, we analyze how sensors can devise optimal strategies by maximizing their own utility while minimizing that of the opponent, regardless of the actions of the opponent. The feasibility and effectiveness of the proposed methods are validated through numerical simulations.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"34 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0235693","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In distributed networks, the transmission of state estimates via wireless channels between neighbor nodes is susceptible to interception by eavesdroppers, leading to significant risks to data privacy. Given the substantial energy and bandwidth consumption of data encryption, sensors with limited energy must strategically decide when to encrypt data. Simultaneously, eavesdroppers with similar energy constraints must determine when to intercept transmissions. In this paper, we propose a game-theoretic approach to this security dilemma and introduce a defense strategy based on zero-determinant (ZD) policies. Initially, we model the interaction between sensors and malicious eavesdroppers in the distributed state estimation as an iterative game. Subsequently, we apply ZD strategies to protect both channel and node data, respectively. We further explore how, under these strategies, sensors can unilaterally set the expected payoff of eavesdroppers or coerce a positive correlation with the expected payoff of sensors. Moreover, we analyze how sensors can devise optimal strategies by maximizing their own utility while minimizing that of the opponent, regardless of the actions of the opponent. The feasibility and effectiveness of the proposed methods are validated through numerical simulations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信