Jonathan R Gadsby, Pantelis Savvas Ioannou, Richard Butler, Julia Mason, Alison J Smith, Ulrich Dobramysl, Stacey E Chin, Claire Dobson, Jennifer L Gallop
{"title":"The open to closed D-loop conformational switch determines length in filopodia-like actin bundles.","authors":"Jonathan R Gadsby, Pantelis Savvas Ioannou, Richard Butler, Julia Mason, Alison J Smith, Ulrich Dobramysl, Stacey E Chin, Claire Dobson, Jennifer L Gallop","doi":"10.1042/BCJ20240367","DOIUrl":null,"url":null,"abstract":"<p><p>Filopodia, microspikes and cytonemes are implicated in sensing the environment and in dissemination of morphogens, organelles and pathogens across tissues. Their major structural component is parallel bundles of actin filaments that assemble from the cell membrane. Whilst the length of filopodia is central to their function, it is not known how their lengths are determined by actin bundle dynamics. Here, we identified a set of monoclonal antibodies that lengthen filopodia-like structures formed in a cell-free reconstitution system, and used them to uncover a key molecular switch governing length regulation. Using immunolabelling, enzyme-linked immunosorbent assays, immunoprecipitation and immunoblock experiments, we identified four antibodies that lengthen actin bundles by selectively binding the open DNase 1-binding loop (D-loop) of actin filaments. The antibodies inhibit actin disassembly and their effects can be alleviated by providing additional actin or cofilin. This work indicates that maintaining an open state of the actin filament D-loop is a mechanism of generating long filopodia-like actin bundles.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":"1977-1995"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20240367","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Filopodia, microspikes and cytonemes are implicated in sensing the environment and in dissemination of morphogens, organelles and pathogens across tissues. Their major structural component is parallel bundles of actin filaments that assemble from the cell membrane. Whilst the length of filopodia is central to their function, it is not known how their lengths are determined by actin bundle dynamics. Here, we identified a set of monoclonal antibodies that lengthen filopodia-like structures formed in a cell-free reconstitution system, and used them to uncover a key molecular switch governing length regulation. Using immunolabelling, enzyme-linked immunosorbent assays, immunoprecipitation and immunoblock experiments, we identified four antibodies that lengthen actin bundles by selectively binding the open DNase 1-binding loop (D-loop) of actin filaments. The antibodies inhibit actin disassembly and their effects can be alleviated by providing additional actin or cofilin. This work indicates that maintaining an open state of the actin filament D-loop is a mechanism of generating long filopodia-like actin bundles.
期刊介绍:
Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology.
The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed.
Painless publishing:
All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for.
Areas covered in the journal include:
Cell biology
Chemical biology
Energy processes
Gene expression and regulation
Mechanisms of disease
Metabolism
Molecular structure and function
Plant biology
Signalling