Eleanor B Reed, Albert Sitikov, Kun Woo D Shin, Robert B Hamanaka, Rengül Cetin-Atalay, Gökhan M Mutlu, Alexander A Mongin, Nickolai O Dulin
{"title":"Gα12 and Gα13 proteins are required for transforming growth factor-β-induced myofibroblast differentiation.","authors":"Eleanor B Reed, Albert Sitikov, Kun Woo D Shin, Robert B Hamanaka, Rengül Cetin-Atalay, Gökhan M Mutlu, Alexander A Mongin, Nickolai O Dulin","doi":"10.1042/BCJ20240317","DOIUrl":null,"url":null,"abstract":"<p><p>Myofibroblast differentiation, characterized by accumulation of cytoskeletal and extracellular matrix proteins by fibroblasts, is a key process in wound healing and pathogenesis of tissue fibrosis. Transforming growth factor-β (TGF-β) is the most powerful known driver of myofibroblast differentiation. TGF-β signals through transmembrane receptor serine/threonine kinases that phosphorylate Smad transcription factors (Smad2/3) leading to activation of transcription of target genes. Heterotrimeric G proteins mediate distinct signaling from seven-transmembrane G protein coupled receptors, which are not known to be linked to Smad activation. We tested whether G protein signaling plays any role in TGF-β-induced myofibroblast differentiation, using primary cultured human lung fibroblasts. Activation of Gαs by cholera toxin blocked TGF-β-induced myofibroblast differentiation without affecting Smad2/3 phosphorylation. Neither inhibition of Gαi by pertussis toxin nor siRNA-mediated combined knockdown of Gαq and Gα11 had a significant effect on TGF-β-induced myofibroblast differentiation. In contrast, combined knockdown of Gα12 and Gα13 significantly inhibited TGF-β-stimulated expression of myofibroblast marker proteins (collagen-1, fibronectin, smooth-muscle α-actin), with siGα12 being significantly more potent than siGα13. Mechanistically, combined knockdown of Gα12 and Gα13 resulted in substantially reduced phosphorylation of Smad2 and Smad3 in response to TGF-β, which was accompanied by a significant decrease in the expression of TGF-β receptors (TGFBR1, TGFBR2) and of Smad3. Thus, our study uncovers a novel role of Gα12/13 proteins in the control of TGF-β signaling and myofibroblast differentiation.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":"1937-1948"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668492/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20240317","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Myofibroblast differentiation, characterized by accumulation of cytoskeletal and extracellular matrix proteins by fibroblasts, is a key process in wound healing and pathogenesis of tissue fibrosis. Transforming growth factor-β (TGF-β) is the most powerful known driver of myofibroblast differentiation. TGF-β signals through transmembrane receptor serine/threonine kinases that phosphorylate Smad transcription factors (Smad2/3) leading to activation of transcription of target genes. Heterotrimeric G proteins mediate distinct signaling from seven-transmembrane G protein coupled receptors, which are not known to be linked to Smad activation. We tested whether G protein signaling plays any role in TGF-β-induced myofibroblast differentiation, using primary cultured human lung fibroblasts. Activation of Gαs by cholera toxin blocked TGF-β-induced myofibroblast differentiation without affecting Smad2/3 phosphorylation. Neither inhibition of Gαi by pertussis toxin nor siRNA-mediated combined knockdown of Gαq and Gα11 had a significant effect on TGF-β-induced myofibroblast differentiation. In contrast, combined knockdown of Gα12 and Gα13 significantly inhibited TGF-β-stimulated expression of myofibroblast marker proteins (collagen-1, fibronectin, smooth-muscle α-actin), with siGα12 being significantly more potent than siGα13. Mechanistically, combined knockdown of Gα12 and Gα13 resulted in substantially reduced phosphorylation of Smad2 and Smad3 in response to TGF-β, which was accompanied by a significant decrease in the expression of TGF-β receptors (TGFBR1, TGFBR2) and of Smad3. Thus, our study uncovers a novel role of Gα12/13 proteins in the control of TGF-β signaling and myofibroblast differentiation.
期刊介绍:
Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology.
The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed.
Painless publishing:
All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for.
Areas covered in the journal include:
Cell biology
Chemical biology
Energy processes
Gene expression and regulation
Mechanisms of disease
Metabolism
Molecular structure and function
Plant biology
Signalling