Targeting EGFR Activation to Overcome Gemcitabine Resistance in Cholangiocarcinoma.

IF 1.6 4区 医学 Q4 ONCOLOGY
Sonexai Kidoikhammouan, Worachart Lert-Itthiporn, Raksawan Deenonpoe, Charupong Saengboonmee, Sumalee Obchoei, Sopit Wongkham, Wunchana Seubwai
{"title":"Targeting EGFR Activation to Overcome Gemcitabine Resistance in Cholangiocarcinoma.","authors":"Sonexai Kidoikhammouan, Worachart Lert-Itthiporn, Raksawan Deenonpoe, Charupong Saengboonmee, Sumalee Obchoei, Sopit Wongkham, Wunchana Seubwai","doi":"10.21873/anticanres.17366","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Chemotherapy resistance is an important problem in the treatment of patients with cholangiocarcinoma (CCA) who are not eligible for surgery. This study aimed to overcome gemcitabine (Gem) resistance in CCA by investigating and targeting Gem resistance-associated molecules.</p><p><strong>Materials and methods: </strong>Three stable Gem-resistant CCA cell lines (CCA-GemR) were established by gradually exposing CCA cell lines to Gem. The cells were characterized in terms of growth, cross-resistance to chemotherapeutic drugs, cell cycle distribution, and colony formation. The molecular mechanisms related to Gem resistance were assessed using a phosphorylation array assay and protein expression was confirmed using western blotting analysis. The targeted molecules were subsequently analyzed using PanDrugs to identify potential targeted therapies. The drug was used to enhance Gem sensitivity.</p><p><strong>Results: </strong>The results demonstrated that CCA-GemR cells grow more slowly compared to their parental cell lines. Cell cycle analysis revealed an increase in KKU-213A-GemR and KKU-213B-GemR cell accumulation in the G1 phase. Moreover, cross-resistance to 5-FU and cisplatin was observed in all CCA-GemR cells. The Proteome Profiler Human Phospho-Kinase Array showed increased phosphorylation of EGFR in CCA-GemR cells. Erlotinib, a specific inhibitor of EGFR, significantly enhanced the anti-tumor activity of Gem with a synergistic effect (Combination index <1). Western blot analysis confirmed that phosphorylation of EGFR increased in cells treated with Gem, whereas the expression was significantly decreased in cells treated with either erlotinib alone or in combination with Gem.</p><p><strong>Conclusion: </strong>EGFR is a potential target molecule for reducing Gem resistance and enhancing its anti-tumor effects in patients with CCA.</p>","PeriodicalId":8072,"journal":{"name":"Anticancer research","volume":"44 12","pages":"5393-5404"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anticancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/anticanres.17366","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/aim: Chemotherapy resistance is an important problem in the treatment of patients with cholangiocarcinoma (CCA) who are not eligible for surgery. This study aimed to overcome gemcitabine (Gem) resistance in CCA by investigating and targeting Gem resistance-associated molecules.

Materials and methods: Three stable Gem-resistant CCA cell lines (CCA-GemR) were established by gradually exposing CCA cell lines to Gem. The cells were characterized in terms of growth, cross-resistance to chemotherapeutic drugs, cell cycle distribution, and colony formation. The molecular mechanisms related to Gem resistance were assessed using a phosphorylation array assay and protein expression was confirmed using western blotting analysis. The targeted molecules were subsequently analyzed using PanDrugs to identify potential targeted therapies. The drug was used to enhance Gem sensitivity.

Results: The results demonstrated that CCA-GemR cells grow more slowly compared to their parental cell lines. Cell cycle analysis revealed an increase in KKU-213A-GemR and KKU-213B-GemR cell accumulation in the G1 phase. Moreover, cross-resistance to 5-FU and cisplatin was observed in all CCA-GemR cells. The Proteome Profiler Human Phospho-Kinase Array showed increased phosphorylation of EGFR in CCA-GemR cells. Erlotinib, a specific inhibitor of EGFR, significantly enhanced the anti-tumor activity of Gem with a synergistic effect (Combination index <1). Western blot analysis confirmed that phosphorylation of EGFR increased in cells treated with Gem, whereas the expression was significantly decreased in cells treated with either erlotinib alone or in combination with Gem.

Conclusion: EGFR is a potential target molecule for reducing Gem resistance and enhancing its anti-tumor effects in patients with CCA.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Anticancer research
Anticancer research 医学-肿瘤学
CiteScore
3.70
自引率
10.00%
发文量
566
审稿时长
2 months
期刊介绍: ANTICANCER RESEARCH is an independent international peer-reviewed journal devoted to the rapid publication of high quality original articles and reviews on all aspects of experimental and clinical oncology. Prompt evaluation of all submitted articles in confidence and rapid publication within 1-2 months of acceptance are guaranteed. ANTICANCER RESEARCH was established in 1981 and is published monthly (bimonthly until the end of 2008). Each annual volume contains twelve issues and index. Each issue may be divided into three parts (A: Reviews, B: Experimental studies, and C: Clinical and Epidemiological studies). Special issues, presenting the proceedings of meetings or groups of papers on topics of significant progress, will also be included in each volume. There is no limitation to the number of pages per issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信