Selective Synergy of Recombinant Methioninase Plus Docetaxel Against Docetaxel-resistant and -sensitive Fibrosarcoma Cells Compared to Normal Fibroblasts.
Sei Morinaga, Qinghong Han, Kohei Mizuta, Byung Mo Kang, Michael Bouvet, Norio Yamamoto, Katsuhiro Hayashi, Hiroaki Kimura, Shinji Miwa, Kentaro Igarashi, Takashi Higuchi, Hiroyuki Tsuchiya, Satoru Demura, Robert M Hoffman
{"title":"Selective Synergy of Recombinant Methioninase Plus Docetaxel Against Docetaxel-resistant and -sensitive Fibrosarcoma Cells Compared to Normal Fibroblasts.","authors":"Sei Morinaga, Qinghong Han, Kohei Mizuta, Byung Mo Kang, Michael Bouvet, Norio Yamamoto, Katsuhiro Hayashi, Hiroaki Kimura, Shinji Miwa, Kentaro Igarashi, Takashi Higuchi, Hiroyuki Tsuchiya, Satoru Demura, Robert M Hoffman","doi":"10.21873/anticanres.17347","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Docetaxel combined with gemcitabine is a second-line treatment for soft-tissue sarcoma; however, its effectiveness is limited because of docetaxel resistance. The objective of the present study was to determine the potential of recombinant methioninase (rMETase) to enhance the efficacy of docetaxel on high-docetaxel-resistant human fibrosarcoma cells in vitro.</p><p><strong>Materials and methods: </strong>Docetaxel-resistant HT1080 (DTR-HT1080) human fibrosarcoma cells were established by culturing them in by progressively increasing concentrations of docetaxel from 0.02 to 9 nM in vitro. The IC<sub>50</sub> values for docetaxel and rMETase, as well as the efficacy of their combination, in inhibiting HT1080 human fibrosarcoma cells, DTR-HT1080 cells, and Hs27 normal human fibroblasts were determined. Four experimental groups were examined in vitro: control group without treatment; docetaxel alone; rMETase alone; docetaxel combined with rMETase.</p><p><strong>Results: </strong>The IC<sub>50</sub> of docetaxel for DTR-HT1080 cells was 7.57 nM, compared to the parental HT1080 cells with an IC<sub>50</sub> of 1.68 nM, a 4.5-fold increase. The IC<sub>50</sub> of docetaxel on Hs27 fibroblasts was 4.46 nM. The IC<sub>50</sub> of rMETase on HT1080 cells was 0.75 U/ml (data from [6]). The IC<sub>50</sub> of rMETase on DTR-HT1080 cells was 0.55 U/ml. The IC<sub>50</sub> of rMETase on Hs27 fibroblasts was 0.93 U/ml (data from [6]). Docetaxel (1.68 nM [IC<sub>50</sub>]) plus rMETase (0.75 U/ml [IC<sub>50</sub>]) synergistically reduced the viability of HT1080 cells (p<0.05). In contrast, docetaxel (4.46 nM) plus rMETase (0.93 U/ml) did not reduce the viability of Hs27 fibroblasts, compared to either agent alone. The combination of rMETase (0.55 U/ml [IC<sub>50</sub>]) and docetaxel (1.68 nM [IC<sub>50</sub> of the parental cells]) overcame docetaxel resistance of DTR-HT1080 cells, resulting in an inhibition of 48.1% compared to docetaxel alone (6.8%) or rMETase alone (37.5%) (p<0.05). rMETase thus increased the efficacy of docetaxel 7-fold on docetaxel-resistant human fibrosarcoma cells.</p><p><strong>Conclusion: </strong>The combination of docetaxel and rMETase was synergistic on HT1080 fibrosarcoma cells, but not normal fibroblasts. rMETase plus docetaxel synergistically reduced the high docetaxel resistance of DTR-HT1080 cells. The present results indicate the clinical potential of rMETase to reduce docetaxel resistance in soft-tissue sarcoma patients in the future.</p>","PeriodicalId":8072,"journal":{"name":"Anticancer research","volume":"44 12","pages":"5207-5213"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anticancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/anticanres.17347","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aim: Docetaxel combined with gemcitabine is a second-line treatment for soft-tissue sarcoma; however, its effectiveness is limited because of docetaxel resistance. The objective of the present study was to determine the potential of recombinant methioninase (rMETase) to enhance the efficacy of docetaxel on high-docetaxel-resistant human fibrosarcoma cells in vitro.
Materials and methods: Docetaxel-resistant HT1080 (DTR-HT1080) human fibrosarcoma cells were established by culturing them in by progressively increasing concentrations of docetaxel from 0.02 to 9 nM in vitro. The IC50 values for docetaxel and rMETase, as well as the efficacy of their combination, in inhibiting HT1080 human fibrosarcoma cells, DTR-HT1080 cells, and Hs27 normal human fibroblasts were determined. Four experimental groups were examined in vitro: control group without treatment; docetaxel alone; rMETase alone; docetaxel combined with rMETase.
Results: The IC50 of docetaxel for DTR-HT1080 cells was 7.57 nM, compared to the parental HT1080 cells with an IC50 of 1.68 nM, a 4.5-fold increase. The IC50 of docetaxel on Hs27 fibroblasts was 4.46 nM. The IC50 of rMETase on HT1080 cells was 0.75 U/ml (data from [6]). The IC50 of rMETase on DTR-HT1080 cells was 0.55 U/ml. The IC50 of rMETase on Hs27 fibroblasts was 0.93 U/ml (data from [6]). Docetaxel (1.68 nM [IC50]) plus rMETase (0.75 U/ml [IC50]) synergistically reduced the viability of HT1080 cells (p<0.05). In contrast, docetaxel (4.46 nM) plus rMETase (0.93 U/ml) did not reduce the viability of Hs27 fibroblasts, compared to either agent alone. The combination of rMETase (0.55 U/ml [IC50]) and docetaxel (1.68 nM [IC50 of the parental cells]) overcame docetaxel resistance of DTR-HT1080 cells, resulting in an inhibition of 48.1% compared to docetaxel alone (6.8%) or rMETase alone (37.5%) (p<0.05). rMETase thus increased the efficacy of docetaxel 7-fold on docetaxel-resistant human fibrosarcoma cells.
Conclusion: The combination of docetaxel and rMETase was synergistic on HT1080 fibrosarcoma cells, but not normal fibroblasts. rMETase plus docetaxel synergistically reduced the high docetaxel resistance of DTR-HT1080 cells. The present results indicate the clinical potential of rMETase to reduce docetaxel resistance in soft-tissue sarcoma patients in the future.
期刊介绍:
ANTICANCER RESEARCH is an independent international peer-reviewed journal devoted to the rapid publication of high quality original articles and reviews on all aspects of experimental and clinical oncology. Prompt evaluation of all submitted articles in confidence and rapid publication within 1-2 months of acceptance are guaranteed.
ANTICANCER RESEARCH was established in 1981 and is published monthly (bimonthly until the end of 2008). Each annual volume contains twelve issues and index. Each issue may be divided into three parts (A: Reviews, B: Experimental studies, and C: Clinical and Epidemiological studies).
Special issues, presenting the proceedings of meetings or groups of papers on topics of significant progress, will also be included in each volume. There is no limitation to the number of pages per issue.