Oxidative Deformylation of the Predominant DNA Lesion 5-Formyl-2'-deoxyuridine.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Chemical Research in Toxicology Pub Date : 2024-12-16 Epub Date: 2024-12-02 DOI:10.1021/acs.chemrestox.4c00410
Gabriel Robert, Charlotte Sabourin, J Richard Wagner
{"title":"Oxidative Deformylation of the Predominant DNA Lesion 5-Formyl-2'-deoxyuridine.","authors":"Gabriel Robert, Charlotte Sabourin, J Richard Wagner","doi":"10.1021/acs.chemrestox.4c00410","DOIUrl":null,"url":null,"abstract":"<p><p>Radical oxidation of DNA gives rise to potentially deleterious lesions such as strand breaks and various nucleobase modifications including 5-formyl-2'-deoxyuridine (5-fo-dU), a prevalent product derived from the oxidation of the C5-methyl group of thymidine. The present study investigates the unusual transformation of 5-fo-dU into 5-hydroxy-2'-deoxyuridine (5-oh-dU) and 5,6-dihydroxy-5,6-dihydro-2'-deoxuridine (gly-dU), two products typically associated with the oxidation of 2'-deoxycytidine. Detailed mechanistic analyses reveal that hydrogen peroxide, either generated as a byproduct of ascorbate autoxidation or added exogenously, mediates the formation of these oxidatively induced C5-dealkylated products. We show that the major product 5-oh-dU results from a Baeyer-Villiger rearrangement of the formyl functionality of 5-fo-dU while the minor product gly-dU derives from α,β-oxidation of the enal portion followed by deformylation. These reactions were observed in both 2'-deoxynucleoside monomers as well as isolated DNA. Our findings further clarify the oxidation chemistry of thymidine and highlight a novel oxidative decomposition pathway that can help understand the fate of certain types of DNA damage. Furthermore, our results underscore the pro-oxidant properties of ascorbate <i>in vitro</i> that can lead to the adventitious oxidation of substrates via the reduction of trace metals ions and generation of hydrogen peroxide.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"2032-2039"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00410","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Radical oxidation of DNA gives rise to potentially deleterious lesions such as strand breaks and various nucleobase modifications including 5-formyl-2'-deoxyuridine (5-fo-dU), a prevalent product derived from the oxidation of the C5-methyl group of thymidine. The present study investigates the unusual transformation of 5-fo-dU into 5-hydroxy-2'-deoxyuridine (5-oh-dU) and 5,6-dihydroxy-5,6-dihydro-2'-deoxuridine (gly-dU), two products typically associated with the oxidation of 2'-deoxycytidine. Detailed mechanistic analyses reveal that hydrogen peroxide, either generated as a byproduct of ascorbate autoxidation or added exogenously, mediates the formation of these oxidatively induced C5-dealkylated products. We show that the major product 5-oh-dU results from a Baeyer-Villiger rearrangement of the formyl functionality of 5-fo-dU while the minor product gly-dU derives from α,β-oxidation of the enal portion followed by deformylation. These reactions were observed in both 2'-deoxynucleoside monomers as well as isolated DNA. Our findings further clarify the oxidation chemistry of thymidine and highlight a novel oxidative decomposition pathway that can help understand the fate of certain types of DNA damage. Furthermore, our results underscore the pro-oxidant properties of ascorbate in vitro that can lead to the adventitious oxidation of substrates via the reduction of trace metals ions and generation of hydrogen peroxide.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信