A Biomolecular Circuit for Automatic Gene Regulation in Mammalian Cells with CRISPR Technology.

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
ACS Synthetic Biology Pub Date : 2024-12-20 Epub Date: 2024-12-02 DOI:10.1021/acssynbio.4c00225
Alessio Mallozzi, Virginia Fusco, Francesco Ragazzini, Diego di Bernardo
{"title":"A Biomolecular Circuit for Automatic Gene Regulation in Mammalian Cells with CRISPR Technology.","authors":"Alessio Mallozzi, Virginia Fusco, Francesco Ragazzini, Diego di Bernardo","doi":"10.1021/acssynbio.4c00225","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a biomolecular circuit for precise control of gene expression in mammalian cells. The circuit leverages the stochiometric interaction between the artificial transcription factor VPR-dCas9 and the anti-CRISPR protein AcrIIA4, enhanced with synthetic coiled-coil domains to boost their interaction, to maintain the expression of a reporter protein constant across diverse experimental conditions, including fluctuations in protein degradation rates and plasmid concentrations, by automatically adjusting its mRNA level. This capability, known as robust perfect adaptation (RPA), is crucial for the stable functioning of biological systems and has wide-ranging implications for biotechnological applications. This system belongs to a class of biomolecular circuits named antithetic integral controllers, and it can be easily adapted to regulate any endogenous transcription factor thanks to the versatility of the CRISPR-Cas system. Finally, we show that RPA also holds in cells genomically integrated with the circuit, thus paving the way for practical applications in biotechnology that require stable cell lines.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"3917-3925"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669156/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00225","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a biomolecular circuit for precise control of gene expression in mammalian cells. The circuit leverages the stochiometric interaction between the artificial transcription factor VPR-dCas9 and the anti-CRISPR protein AcrIIA4, enhanced with synthetic coiled-coil domains to boost their interaction, to maintain the expression of a reporter protein constant across diverse experimental conditions, including fluctuations in protein degradation rates and plasmid concentrations, by automatically adjusting its mRNA level. This capability, known as robust perfect adaptation (RPA), is crucial for the stable functioning of biological systems and has wide-ranging implications for biotechnological applications. This system belongs to a class of biomolecular circuits named antithetic integral controllers, and it can be easily adapted to regulate any endogenous transcription factor thanks to the versatility of the CRISPR-Cas system. Finally, we show that RPA also holds in cells genomically integrated with the circuit, thus paving the way for practical applications in biotechnology that require stable cell lines.

利用CRISPR技术构建哺乳动物细胞基因自动调控的生物分子电路。
我们介绍了一种精确控制哺乳动物细胞基因表达的生物分子电路。该电路利用人工转录因子VPR-dCas9和抗crispr蛋白AcrIIA4之间的随机相互作用,通过合成线圈结构域增强它们之间的相互作用,通过自动调节其mRNA水平,在不同的实验条件下(包括蛋白质降解率和质粒浓度的波动)维持报告蛋白的表达恒定。这种能力被称为鲁棒完美适应(RPA),对生物系统的稳定功能至关重要,并对生物技术应用具有广泛的影响。该系统属于一类被称为对偶积分控制器的生物分子电路,由于CRISPR-Cas系统的通用性,它可以很容易地适应调节任何内源性转录因子。最后,我们表明RPA也存在于与电路基因组整合的细胞中,从而为需要稳定细胞系的生物技术的实际应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信