{"title":"Characterizing the Slow Dynamics of the Swap Monte Carlo Algorithm.","authors":"Kumpei Shiraishi, Ludovic Berthier","doi":"10.1021/acs.jpcb.4c06702","DOIUrl":null,"url":null,"abstract":"<p><p>The swap Monte Carlo algorithm introduces nonphysical dynamic rules to accelerate the exploration of the configuration space of supercooled liquids. Its success raises deep questions regarding the nature and physical origin of the slow dynamics of dense liquids and how it is affected by swap moves. We provide a detailed analysis of the slow dynamics generated by the swap Monte Carlo algorithm at very low temperatures in two glass-forming models. We find that the slowing down of the swap dynamics is qualitatively distinct from its local Monte Carlo counterpart, with considerably suppressed dynamic heterogeneity at both single-particle and collective levels. Our results suggest that local kinetic constraints are drastically reduced by swap moves, leading to nearly Gaussian and diffusive dynamics and weakly growing dynamic correlation length scales. The comparison between static and dynamic fluctuations shows that swap Monte Carlo is a nearly optimal local equilibrium algorithm, suggesting that further progress should necessarily involve collective or driven algorithms.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"12279-12291"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c06702","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The swap Monte Carlo algorithm introduces nonphysical dynamic rules to accelerate the exploration of the configuration space of supercooled liquids. Its success raises deep questions regarding the nature and physical origin of the slow dynamics of dense liquids and how it is affected by swap moves. We provide a detailed analysis of the slow dynamics generated by the swap Monte Carlo algorithm at very low temperatures in two glass-forming models. We find that the slowing down of the swap dynamics is qualitatively distinct from its local Monte Carlo counterpart, with considerably suppressed dynamic heterogeneity at both single-particle and collective levels. Our results suggest that local kinetic constraints are drastically reduced by swap moves, leading to nearly Gaussian and diffusive dynamics and weakly growing dynamic correlation length scales. The comparison between static and dynamic fluctuations shows that swap Monte Carlo is a nearly optimal local equilibrium algorithm, suggesting that further progress should necessarily involve collective or driven algorithms.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.