Balancing Group 1 Monoatomic Ion-Polar Compound Interactions in the Polarizable Drude Force Field: Application in Protein and Nucleic Acid Systems.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2024-12-12 Epub Date: 2024-12-03 DOI:10.1021/acs.jpcb.4c06354
Yiling Nan, Prabin Baral, Asuka A Orr, Haley M Michel, Justin A Lemkul, Alexander D MacKerell
{"title":"Balancing Group 1 Monoatomic Ion-Polar Compound Interactions in the Polarizable Drude Force Field: Application in Protein and Nucleic Acid Systems.","authors":"Yiling Nan, Prabin Baral, Asuka A Orr, Haley M Michel, Justin A Lemkul, Alexander D MacKerell","doi":"10.1021/acs.jpcb.4c06354","DOIUrl":null,"url":null,"abstract":"<p><p>An accurate force field (FF) is the foundation of reliable results from molecular dynamics (MD) simulations. In our recently published work, we developed a protocol to generate atom pair-specific Lennard-Jones (known as NBFIX in CHARMM) and through-space Thole dipole screening (NBTHOLE) parameters in the context of the Drude polarizable FF based on readily accessible quantum mechanical (QM) data to fit condensed phase experimental thermodynamic benchmarks, including the osmotic pressure, diffusion coefficient, ionic conductivity, and solvation free energy, when available. In the present work, the developed protocol is applied to generate NBFIX and NBTHOLE parameters for interactions between monatomic ions (specifically Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>, and Cl<sup>-</sup>) and common functional groups found in proteins and nucleic acids. The parameters generated for each ion-functional group pair were then applied to the corresponding functional groups within proteins or nucleic acids followed by MD simulations to analyze the distribution of ions around these biomolecules. The modified FF successfully addresses the issue of overbinding observed in a previous iteration of the Drude FF. Quantitatively, the model accurately reproduces the effective charge of proteins and demonstrates a level of charge neutralization for a double-helix B-DNA in good agreement with the counterion condensation theory. Additionally, simulations involving ion competition correlate well with experimental results, following the trend Li<sup>+</sup> > Na<sup>+</sup> ≈ K<sup>+</sup> > Rb<sup>+</sup>. These results validate the refined model for group 1 ion-biomolecule interactions that will facilitate the application of the polarizable Drude FF in systems in which group 1 ions play an important role.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"12078-12091"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646484/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c06354","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An accurate force field (FF) is the foundation of reliable results from molecular dynamics (MD) simulations. In our recently published work, we developed a protocol to generate atom pair-specific Lennard-Jones (known as NBFIX in CHARMM) and through-space Thole dipole screening (NBTHOLE) parameters in the context of the Drude polarizable FF based on readily accessible quantum mechanical (QM) data to fit condensed phase experimental thermodynamic benchmarks, including the osmotic pressure, diffusion coefficient, ionic conductivity, and solvation free energy, when available. In the present work, the developed protocol is applied to generate NBFIX and NBTHOLE parameters for interactions between monatomic ions (specifically Li+, Na+, K+, Rb+, Cs+, and Cl-) and common functional groups found in proteins and nucleic acids. The parameters generated for each ion-functional group pair were then applied to the corresponding functional groups within proteins or nucleic acids followed by MD simulations to analyze the distribution of ions around these biomolecules. The modified FF successfully addresses the issue of overbinding observed in a previous iteration of the Drude FF. Quantitatively, the model accurately reproduces the effective charge of proteins and demonstrates a level of charge neutralization for a double-helix B-DNA in good agreement with the counterion condensation theory. Additionally, simulations involving ion competition correlate well with experimental results, following the trend Li+ > Na+ ≈ K+ > Rb+. These results validate the refined model for group 1 ion-biomolecule interactions that will facilitate the application of the polarizable Drude FF in systems in which group 1 ions play an important role.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信