Free Energy Landscape of Lesion Recognition by Human 8-Oxoguanine DNA N-Glycosylase 1: Mechanistic Insights into Detection and Processing of 8-Oxoguanine in DNA.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2024-12-12 Epub Date: 2024-12-03 DOI:10.1021/acs.jpcb.4c07073
Hyeonjun Kim, Youngshang Pak
{"title":"Free Energy Landscape of Lesion Recognition by Human 8-Oxoguanine DNA N-Glycosylase 1: Mechanistic Insights into Detection and Processing of 8-Oxoguanine in DNA.","authors":"Hyeonjun Kim, Youngshang Pak","doi":"10.1021/acs.jpcb.4c07073","DOIUrl":null,"url":null,"abstract":"<p><p>Human 8-oxoguanine DNA <i>N</i>-glycosylase 1 (hOGG1) is an essential enzyme in DNA repair, responsible for recognizing and excising 8-oxoguanine (8OG), the lesion resulting from oxidative damage to guanine (G). By removing 8OG, hOGG1 prevents mutations like G-to-T transversions, maintains genomic stability, and reduces the risk of cancer and other diseases. Structural studies of hOGG1 bound to DNA have shown that lesion recognition occurs through base eversion from the DNA helix and hOGG1 finger residue insertion into the DNA helix. To better understand this complex process, enhanced sampling molecular dynamics simulations were used to map two-dimensional free energy surfaces that describe lesion recognition in terms of base eversion and finger residue insertion. The resulting free energy profiles reveal one major SN2-like and two minor SN1-like pathways for 8OG and normal G and show that hOGG1 has kinetic and thermodynamic advantages in terms of recognizing 8OG over G. Based on these data, simple kinetic models were utilized to provide a quantitative view of lesion recognition kinetics of 8OG versus G. The most favorable kinetic scenario identified was that the scanning rate of hOGG1 falls between the initial interrogation rates of 8OG and G. According to this scenario, hOGG1 rapidly scans normal Gs at its intrinsic diffusion speed, bypassing unnecessary interrogations. However, when hOGG1 encounters 8OG, the enzyme significantly slows down during lesion recognition until the damaged base is excised from its catalytic pocket. This highly selective mechanism ensures that hOGG1 efficiently repairs oxidative DNA damage by carefully regulating how it scans the DNA, thus optimizing the balance between speed and accuracy during the scanning process.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"12133-12142"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07073","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) is an essential enzyme in DNA repair, responsible for recognizing and excising 8-oxoguanine (8OG), the lesion resulting from oxidative damage to guanine (G). By removing 8OG, hOGG1 prevents mutations like G-to-T transversions, maintains genomic stability, and reduces the risk of cancer and other diseases. Structural studies of hOGG1 bound to DNA have shown that lesion recognition occurs through base eversion from the DNA helix and hOGG1 finger residue insertion into the DNA helix. To better understand this complex process, enhanced sampling molecular dynamics simulations were used to map two-dimensional free energy surfaces that describe lesion recognition in terms of base eversion and finger residue insertion. The resulting free energy profiles reveal one major SN2-like and two minor SN1-like pathways for 8OG and normal G and show that hOGG1 has kinetic and thermodynamic advantages in terms of recognizing 8OG over G. Based on these data, simple kinetic models were utilized to provide a quantitative view of lesion recognition kinetics of 8OG versus G. The most favorable kinetic scenario identified was that the scanning rate of hOGG1 falls between the initial interrogation rates of 8OG and G. According to this scenario, hOGG1 rapidly scans normal Gs at its intrinsic diffusion speed, bypassing unnecessary interrogations. However, when hOGG1 encounters 8OG, the enzyme significantly slows down during lesion recognition until the damaged base is excised from its catalytic pocket. This highly selective mechanism ensures that hOGG1 efficiently repairs oxidative DNA damage by carefully regulating how it scans the DNA, thus optimizing the balance between speed and accuracy during the scanning process.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信