Karuppuchamy Selvaprakash, Christiana-Kondylo Sideri, Michael Henry, Esen Efeoglu, David Ryan, Paula Meleady
{"title":"Characterization of the Ubiquitin-Modified Proteome of Recombinant Chinese Hamster Ovary Cells in Response to Endoplasmic Reticulum Stress","authors":"Karuppuchamy Selvaprakash, Christiana-Kondylo Sideri, Michael Henry, Esen Efeoglu, David Ryan, Paula Meleady","doi":"10.1002/biot.202400413","DOIUrl":null,"url":null,"abstract":"<p>Chinese hamster ovary (CHO) cells remain the most widely used host cell line for biotherapeutics production. Despite their widespread use, understanding endoplasmic reticulum (ER) stress conditions in recombinant protein production remains limited, often creating bottlenecks preventing improved production titers and product quality. Ubiquitination not only targets substrates (e.g., misfolded proteins) for proteasome degradation but also has important regulatory control functions including cell cycle regulation, translation, apoptosis, autophagy, etc. and hence is likely to be central to understanding and controlling the productivity of recombinant biotherapeutics. This study aimed to uncover differentially expressed ubiquitinated proteins following artificial induction of ER-stress in recombinant CHO cells. CHO cells were treated with the stress inducer tunicamycin and the proteasome inhibitor MG132, followed by LC-MS/MS proteomic analysis. We identified >4000 ubiquitinated peptides from CHO-DP12 cells under ER stress conditions and proteasome inhibition. Moreover, data analysis showed altered abundance levels of >900 ubiquitinated proteins under the combination of ER stress and proteasome inhibition compared to untreated controls. Gene Ontology (GO) analysis of these ubiquitinated proteins resulted in a significant enrichment of key pathways involving the proteasome, protein processing in the ER, <i>N</i>-glycan biosynthesis, and ubiquitin-mediated proteolysis. ER stress response proteins such as GRP78, HSP90B1, ATF6, HERPUD1, and PDIA4 were found to be highly ubiquitinated and exhibited a significant increase in abundance following induction of ER-stress conditions. This study broadens our comprehension of the roles played by protein ubiquitination in CHO cell stress responses, potentially revealing targets for tailored cell line engineering aimed at enhancing stress tolerance and production efficiency.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 11","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202400413","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400413","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Chinese hamster ovary (CHO) cells remain the most widely used host cell line for biotherapeutics production. Despite their widespread use, understanding endoplasmic reticulum (ER) stress conditions in recombinant protein production remains limited, often creating bottlenecks preventing improved production titers and product quality. Ubiquitination not only targets substrates (e.g., misfolded proteins) for proteasome degradation but also has important regulatory control functions including cell cycle regulation, translation, apoptosis, autophagy, etc. and hence is likely to be central to understanding and controlling the productivity of recombinant biotherapeutics. This study aimed to uncover differentially expressed ubiquitinated proteins following artificial induction of ER-stress in recombinant CHO cells. CHO cells were treated with the stress inducer tunicamycin and the proteasome inhibitor MG132, followed by LC-MS/MS proteomic analysis. We identified >4000 ubiquitinated peptides from CHO-DP12 cells under ER stress conditions and proteasome inhibition. Moreover, data analysis showed altered abundance levels of >900 ubiquitinated proteins under the combination of ER stress and proteasome inhibition compared to untreated controls. Gene Ontology (GO) analysis of these ubiquitinated proteins resulted in a significant enrichment of key pathways involving the proteasome, protein processing in the ER, N-glycan biosynthesis, and ubiquitin-mediated proteolysis. ER stress response proteins such as GRP78, HSP90B1, ATF6, HERPUD1, and PDIA4 were found to be highly ubiquitinated and exhibited a significant increase in abundance following induction of ER-stress conditions. This study broadens our comprehension of the roles played by protein ubiquitination in CHO cell stress responses, potentially revealing targets for tailored cell line engineering aimed at enhancing stress tolerance and production efficiency.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.