Steric Stabilization of Colloidal UiO-66 Nanocrystals with Oleylammonium Octadecylphosphonate

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sungho V. Park, Lakshmi Bhai, Ga Hyun Lee, Ah-Hyung Alissa Park, Lauren E. Marbella, Jonathan Owen
{"title":"Steric Stabilization of Colloidal UiO-66 Nanocrystals with Oleylammonium Octadecylphosphonate","authors":"Sungho V. Park, Lakshmi Bhai, Ga Hyun Lee, Ah-Hyung Alissa Park, Lauren E. Marbella, Jonathan Owen","doi":"10.1039/d4sc06528j","DOIUrl":null,"url":null,"abstract":"We report the synthesis and characterization of octahedral UiO-66 nanocrystals (d = 17–25 nm) terminated with amine, oleate, and octadecylphosphonate ligands. Acetate capped UiO-66 nanocrystals were dispersed in toluene using oleic acid and oleylamine. Ligand exchange with octadecylphosphonic acid produces ammonium octadecylphosphonate terminated nanocrystals with coverages of 2.6–3.2 chains nm-2 that stabilize colloidal dispersions in nonpolar solvents. Solution phase 1H and 31P nuclear magnetic resonance (NMR) spectra of the linkers and surface ligands display line shapes that are broadened by slow tumbling of the nanocrystals. Octadecylphosphonate functionalized MOFs have up to ~30% carbon dioxide absorption capacities compared to bulk UiO-66 after correcting for the ligand mass. These results illustrate the intriguing perspective that MOF nanocrystals can be characterized and manipulated like a macromolecular complex and represent an important milestone in the nascent field of MOF surface science.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"110 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc06528j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We report the synthesis and characterization of octahedral UiO-66 nanocrystals (d = 17–25 nm) terminated with amine, oleate, and octadecylphosphonate ligands. Acetate capped UiO-66 nanocrystals were dispersed in toluene using oleic acid and oleylamine. Ligand exchange with octadecylphosphonic acid produces ammonium octadecylphosphonate terminated nanocrystals with coverages of 2.6–3.2 chains nm-2 that stabilize colloidal dispersions in nonpolar solvents. Solution phase 1H and 31P nuclear magnetic resonance (NMR) spectra of the linkers and surface ligands display line shapes that are broadened by slow tumbling of the nanocrystals. Octadecylphosphonate functionalized MOFs have up to ~30% carbon dioxide absorption capacities compared to bulk UiO-66 after correcting for the ligand mass. These results illustrate the intriguing perspective that MOF nanocrystals can be characterized and manipulated like a macromolecular complex and represent an important milestone in the nascent field of MOF surface science.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信