p53 induces circFRMD4A to suppress cancer development through glycolytic reprogramming and cuproptosis

IF 14.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Quan Liao, Jun Deng, Jing Tong, Yu Gan, Weiwei Hong, Hanzhi Dong, Mingming Cao, Chen Xiong, Yajie Chen, Bangxiang Xie, Fu-Ying Yang, Aikede Alifu, Guang-Biao Zhou, Shenglin Huang, Jianping Xiong, Qian Hao, Xiang Zhou
{"title":"p53 induces circFRMD4A to suppress cancer development through glycolytic reprogramming and cuproptosis","authors":"Quan Liao, Jun Deng, Jing Tong, Yu Gan, Weiwei Hong, Hanzhi Dong, Mingming Cao, Chen Xiong, Yajie Chen, Bangxiang Xie, Fu-Ying Yang, Aikede Alifu, Guang-Biao Zhou, Shenglin Huang, Jianping Xiong, Qian Hao, Xiang Zhou","doi":"10.1016/j.molcel.2024.11.013","DOIUrl":null,"url":null,"abstract":"Cuproptosis is a type of copper-induced cell death that mainly impacts cells relying on mitochondrial metabolism. Although p53 regulates glycolytic metabolism, its role in cuproptosis remains unclear. Here, we report that the circular RNA, circFRMD4A, is crucial for p53-mediated metabolic reprogramming and cuproptosis. CircFRMD4A originates from the transcript of <em>FRMD4A</em>, which is transcriptionally activated by p53, and the formation of circFRMD4A is facilitated by the RNA-binding protein EWSR1. CircFRMD4A functions as a tumor suppressor and enhances the sensitivity of cancer cells to elesclomol-induced cuproptosis. Mechanistic analysis reveals that circFRMD4A interacts with and inactivates the pyruvate kinase PKM2, leading to a decrease in lactate production and a redirection of glycolytic flux toward the tricarboxylic acid cycle. Finally, p53 agonists and elesclomol coordinately suppress the growth of cancer in a xenograft mouse model. Altogether, our study uncovers that p53 promotes glycolytic reprogramming and cuproptosis via circFRMD4A and suggests a potential combination strategy against cancers with wild-type p53.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"5 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.11.013","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cuproptosis is a type of copper-induced cell death that mainly impacts cells relying on mitochondrial metabolism. Although p53 regulates glycolytic metabolism, its role in cuproptosis remains unclear. Here, we report that the circular RNA, circFRMD4A, is crucial for p53-mediated metabolic reprogramming and cuproptosis. CircFRMD4A originates from the transcript of FRMD4A, which is transcriptionally activated by p53, and the formation of circFRMD4A is facilitated by the RNA-binding protein EWSR1. CircFRMD4A functions as a tumor suppressor and enhances the sensitivity of cancer cells to elesclomol-induced cuproptosis. Mechanistic analysis reveals that circFRMD4A interacts with and inactivates the pyruvate kinase PKM2, leading to a decrease in lactate production and a redirection of glycolytic flux toward the tricarboxylic acid cycle. Finally, p53 agonists and elesclomol coordinately suppress the growth of cancer in a xenograft mouse model. Altogether, our study uncovers that p53 promotes glycolytic reprogramming and cuproptosis via circFRMD4A and suggests a potential combination strategy against cancers with wild-type p53.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Cell
Molecular Cell 生物-生化与分子生物学
CiteScore
26.00
自引率
3.80%
发文量
389
审稿时长
1 months
期刊介绍: Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信