Developing a rapid assessment framework for China earthquake disaster losses: insights from physical simulations of the Yangbi earthquake

Yilong Li, Zhenguo Zhang, Xiaofei Chen
{"title":"Developing a rapid assessment framework for China earthquake disaster losses: insights from physical simulations of the Yangbi earthquake","authors":"Yilong Li, Zhenguo Zhang, Xiaofei Chen","doi":"10.1038/s44304-024-00037-4","DOIUrl":null,"url":null,"abstract":"Earthquakes remain unpredictable and pose significant challenges to disaster preparedness. This study develops a rapid assessment framework for earthquake disaster losses based on physical simulations, demonstrated through analysis of the 2021 Ms 6.4 Yangbi earthquake. A finite fault source based on observed data is employed on a GPU-accelerated 3D strong ground motion simulation platform. The computational process considers the effects of 3D heterogeneous velocity structure and terrain. Subsequently, this data is incorporated into a mathematical model for earthquake disaster loss assessment derived from historical statistics, evaluating emergency response levels, fatalities, and economic losses. The inclusion of teleseismic data into this framework underscores its extensive applicability for rapid loss assessments, even in regions lacking local seismic data. Through comparisons with station observation waveforms and government-reported loss, the validity and practicality of the framework were substantiated. It plays a vital role in assisting emergency decisions, optimizing resource allocation, and further mitigating losses.","PeriodicalId":501712,"journal":{"name":"npj Natural Hazards","volume":" ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44304-024-00037-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Natural Hazards","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44304-024-00037-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Earthquakes remain unpredictable and pose significant challenges to disaster preparedness. This study develops a rapid assessment framework for earthquake disaster losses based on physical simulations, demonstrated through analysis of the 2021 Ms 6.4 Yangbi earthquake. A finite fault source based on observed data is employed on a GPU-accelerated 3D strong ground motion simulation platform. The computational process considers the effects of 3D heterogeneous velocity structure and terrain. Subsequently, this data is incorporated into a mathematical model for earthquake disaster loss assessment derived from historical statistics, evaluating emergency response levels, fatalities, and economic losses. The inclusion of teleseismic data into this framework underscores its extensive applicability for rapid loss assessments, even in regions lacking local seismic data. Through comparisons with station observation waveforms and government-reported loss, the validity and practicality of the framework were substantiated. It plays a vital role in assisting emergency decisions, optimizing resource allocation, and further mitigating losses.

Abstract Image

建立中国地震灾害损失快速评估框架:来自杨壁地震物理模拟的见解
地震仍然不可预测,对备灾工作构成重大挑战。本研究开发了一个基于物理模拟的地震灾害损失快速评估框架,并通过对2021年杨壁6.4级地震的分析进行了验证。在gpu加速的三维强地震动仿真平台上,采用基于观测数据的有限故障源。计算过程考虑了三维非均质速度结构和地形的影响。随后,这些数据被纳入基于历史统计的地震灾害损失评估数学模型,评估应急响应水平、死亡人数和经济损失。将远震数据纳入这一框架强调了它对快速损失评估的广泛适用性,即使在缺乏当地地震数据的地区也是如此。通过与台站观测波形和政府报告损失的比较,验证了该框架的有效性和实用性。它在协助应急决策、优化资源分配和进一步减少损失方面发挥着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信