Saeed S. I. Almishal, Leixin Miao, Yueze Tan, George N. Kotsonis, Jacob T. Sivak, Nasim Alem, Long-Qing Chen, Vincent H. Crespi, Ismaila Dabo, Christina M. Rost, Susan B. Sinnott, Jon-Paul Maria
{"title":"Order evolution from a high-entropy matrix: Understanding and predicting paths to low-temperature equilibrium","authors":"Saeed S. I. Almishal, Leixin Miao, Yueze Tan, George N. Kotsonis, Jacob T. Sivak, Nasim Alem, Long-Qing Chen, Vincent H. Crespi, Ismaila Dabo, Christina M. Rost, Susan B. Sinnott, Jon-Paul Maria","doi":"10.1111/jace.20223","DOIUrl":null,"url":null,"abstract":"<p>Interest in high-entropy inorganic compounds originates from their ability to stabilize cations and anions in local environments that rarely occur at standard temperature and pressure. This leads to new crystalline phases in many-cation formulations with structures and properties that depart from conventional trends. The highest-entropy homogeneous and random solid solution is a parent structure from which a continuum of lower-entropy offspring can originate by adopting chemical and/or structural order. This report demonstrates how synthesis conditions, thermal history, and elastic and chemical boundary conditions conspire to regulate this process in Mg<sub>0.2</sub>Co<sub>0.2</sub>Ni<sub>0.2</sub>Cu<sub>0.2</sub>Zn<sub>0.2</sub>O, during which coherent CuO nanotweeds and spinel nanocuboids evolve. We do so by combining structured synthesis routes, atomic-resolution microscopy and spectroscopy, density functional theory, and a phase field modeling framework that accurately predicts the emergent structure and local chemistry. This establishes a framework to appreciate, understand, and predict the macrostate spectrum available to a high-entropy system that is critical to rationalizing property engineering opportunities.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jace.20223","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20223","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Interest in high-entropy inorganic compounds originates from their ability to stabilize cations and anions in local environments that rarely occur at standard temperature and pressure. This leads to new crystalline phases in many-cation formulations with structures and properties that depart from conventional trends. The highest-entropy homogeneous and random solid solution is a parent structure from which a continuum of lower-entropy offspring can originate by adopting chemical and/or structural order. This report demonstrates how synthesis conditions, thermal history, and elastic and chemical boundary conditions conspire to regulate this process in Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O, during which coherent CuO nanotweeds and spinel nanocuboids evolve. We do so by combining structured synthesis routes, atomic-resolution microscopy and spectroscopy, density functional theory, and a phase field modeling framework that accurately predicts the emergent structure and local chemistry. This establishes a framework to appreciate, understand, and predict the macrostate spectrum available to a high-entropy system that is critical to rationalizing property engineering opportunities.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.